BZOJ4925 城市规划
对每个人行道求出移动距离在哪些区间内时其在建筑物前面。现在问题即为选一个点使得其被最多的区间包含。差分即可。对建筑暴力去掉重叠部分。开始时没有去重用了nm次vector的push_back,时间大概是去重写法的300倍,不知所措。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define N 10010
#define M 1010
#define K 1000010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,a[N],delta[K<<],cnt,d=K,s;
struct data
{
int l,r;
bool operator <(const data&a) const
{
return l<a.l;
}
}b[M],c[M];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4925.in","r",stdin);
freopen("bzoj4925.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<=m;i++) b[i].l=read(),b[i].r=read();
for (int i=;i<=m;i++)
{
bool flag=;
for (int j=;j<=m;j++)
if (i!=j&&b[j].l<=b[i].l&&b[j].r>=b[i].r) {flag=;break;}
if (flag) c[++cnt]=b[i];
}
m=cnt;sort(c+,c+m+);
cnt=;
for (int i=;i<=m;i++)
{
int t=i;
while (t<m&&c[t+].l<=c[t].r) t++;
cnt++;b[cnt].l=c[i].l,b[cnt].r=c[t].r;
i=t;
}
m=cnt;
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
delta[b[j].l-a[i]+K]++,delta[b[j].r+-a[i]+K]--;
cnt=;
for (int i=;i<(K<<);i++)
{
cnt+=delta[i];
if (cnt>s||cnt==s&&abs(i-K)<d) d=abs(i-K),s=cnt;
}
cout<<d<<' '<<s;
return ;
}
BZOJ4925 城市规划的更多相关文章
- 浅谈城市规划在移动GIS方面的应用发展
1.概述 城市建设进程加快,城市规划管理工作日趋繁重,各种来源的数据产生各种层出不穷的问题,严重影响城市规划时的准确性,为此全面合理的掌握好各方面的城市规划资料才能做出更加科学的决策.移动端的兴起为规 ...
- 【BZOJ-1952】城市规划 [坑题] 仙人掌DP + 最大点权独立集(改)
1952: [Sdoi2010]城市规划 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 73 Solved: 23[Submit][Status][ ...
- BZOJ 3456: 城市规划 [多项式求逆元 组合数学 | 生成函数 多项式求ln]
3456: 城市规划 题意:n个点组成的无向连通图个数 以前做过,今天复习一下 令\(f[n]\)为n个点的无向连通图个数 n个点的完全图个数为\(2^{\binom{n}{2}}\) 和Bell数的 ...
- 【BZOJ3456】城市规划(生成函数,多项式运算)
[BZOJ3456]城市规划(生成函数,多项式运算) 题面 求\(n\)个点的无向连通图个数. \(n<=130000\) 题解 \(n\)个点的无向图的个数\(g(n)=2^{C_n^2}\) ...
- 洛谷 P4841 城市规划 解题报告
P4841 城市规划 题意 n个有标号点的简单(无重边无自环)无向连通图数目. 输入输出格式 输入格式: 仅一行一个整数\(n(\le 130000)\) 输出格式: 仅一行一个整数, 为方案数 \( ...
- 【BZOJ3456】城市规划 多项式求逆
[BZOJ3456]城市规划 Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得 ...
- 【LG4841】城市规划
[LG4841]城市规划 题面 洛谷 题解 记\(t_i\)表示\(i\)个点的无向图个数,显然\(t_i=2^{C_i^2}\). 设\(f_i\)表示\(i\)个点的无向连通图个数,容斥一下,枚举 ...
- 【BZOJ 3456】 3456: 城市规划 (NTT+多项式求逆)
3456: 城市规划 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 658 Solved: 364 Description 刚刚解决完电力网络的问题 ...
- [BZOJ3456]城市规划(生成函数+多项式求逆+多项式求ln)
城市规划 时间限制:40s 空间限制:256MB 题目描述 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一 ...
随机推荐
- struts2官方 中文教程 系列四:Action
先贴个本帖的地址,免得其它网站被爬去了struts2教程 官方系列四:Action 即 http://www.cnblogs.com/linghaoxinpian/p/6905521.html 下载 ...
- Git生成多个ssh key
在实际的工作中, 有可能需要连接多个远程仓库, 例如我想连接私有仓库.GitLab官网.GitHub官网, 那么同一台电脑就要生成多个ssh key: ssh-keygen -t rsa -C &qu ...
- Python range() 函数用法
函数语法 range(start, stop[, step]) 参数说明: start: 计数从 start 开始.默认是从 0 开始.例如range(5)等价于range(0, 5); stop: ...
- i3wm随笔 1
快捷键 mod+0 退出 mod+v 垂直分割 mod+h 水平风格
- 堆中的路径(MOOC)
将一系列给定数字插入一个初始为空的小顶堆H[].随后对任意给定的下标i,打印从H[i]到根结点的路径. 输入格式: 每组测试第1行包含2个正整数N和M(≤),分别是插入元素的个数.以及需要打印的路径条 ...
- 【转】PHPCMS+PHPExcel实现后台数据导入导出功能
首先,上图之中的红色框框是没有的,我们想要给他加上,当然是要改HTML页面啦,废话,我们跟ECSHOP一样由PHP路径找模板: 看看路由原理: 首先,上图之中的红色框框是没有的,我们想要给他加上,当然 ...
- openstack-r版(rocky)搭建基于centos7.4 的openstack swift对象存储服务 一
openstack-r版(rocky)搭建基于centos7.4 的openstack swift对象存储服务 一 openstack-r版(rocky)搭建基于centos7.4 的openstac ...
- ovs源码阅读--流表查询原理
背景 在ovs交换机中,报文的处理流程可以划分为一下三个步骤:协议解析,表项查找和动作执行,其中最耗时的步骤在于表项查找,往往一个流表中有数目巨大的表项,如何根据数据报文的信息快速的查找到对应的流表项 ...
- clone中的浅复制和深复制
clone:用于两个对象有相同的内容时,进行复制操作. 提示:Java中要想自定义类的对象可以被复制,自定义类就必须实现Cloneable中的clone()方法. 浅复制:另一个对象用clone()方 ...
- 【线段树维护复杂状态】Ryuji doesn't want to study
https://nanti.jisuanke.com/t/31460 tree[rt].ans = tree[rt << 1].ans + tree[rt << 1 | 1]. ...