即要求动态维护边双。出现环时将路径上的点合并即可。LCT维护。具体地,加边成环时makeroot+access+splay一套把这段路径提出来,暴力dfs修改并查集祖先,并将这部分与根断开,视为删除这些点,以后就以并查集中的祖先代替这些点。access时更新每个点的父亲。注意由于之前的删点操作,判断是否连通需要另开一个并查集而不能findroot。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 200010
#define lson tree[k].ch[0]
#define rson tree[k].ch[1]
#define lself tree[tree[k].fa].ch[0]
#define rself tree[tree[k].fa].ch[1]
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,q,fa[N],fa2[N],size[N];
struct data{int ch[],fa,rev;
}tree[N];
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int find2(int x){return fa2[x]==x?x:fa2[x]=find2(fa2[x]);}
void rev(int k){if (k) swap(lson,rson),tree[k].rev^=;}
void down(int k){if (tree[k].rev) rev(lson),rev(rson),tree[k].rev=;}
int whichson(int k){return rself==k;}
bool isroot(int k){return lself!=k&&rself!=k;}
void push(int k){if (!isroot(k)) push(tree[k].fa);down(k);}
void move(int k)
{
int fa=tree[k].fa,gf=tree[fa].fa,p=whichson(k);
if (!isroot(fa)) tree[gf].ch[whichson(fa)]=k;tree[k].fa=gf;
tree[fa].ch[p]=tree[k].ch[!p],tree[tree[k].ch[!p]].fa=fa;
tree[k].ch[!p]=fa,tree[fa].fa=k;
}
void splay(int k)
{
push(k);
while (!isroot(k))
{
int fa=tree[k].fa;
if (!isroot(fa))
if (whichson(fa)^whichson(k)) move(k);
else move(fa);
move(k);
}
}
void access(int k){for (int t=;k;t=k,k=tree[k].fa=find(tree[k].fa)) splay(k),tree[k].ch[]=t;}
void makeroot(int k){access(k),splay(k),rev(k);}
void link(int x,int y){makeroot(x),tree[x].fa=y,fa2[find2(x)]=find2(y);}
void dfs(int k,int x)
{
if (!k) return;
if (find(k)!=x) size[x]+=size[find(k)],fa[find(k)]=x;
dfs(lson,x),dfs(rson,x);
}
void addedge(int x,int y)
{
if (find2(x)!=find2(y)) link(x,y);
else
{
makeroot(x),access(y),splay(y);
dfs(tree[y].ch[],y);tree[y].ch[]=;
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4998.in","r",stdin);
freopen("bzoj4998.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read(),q=read();
for (int i=;i<=n;i++) fa[i]=i,fa2[i]=i,size[i]=;
for (int i=;i<=m;i++)
{
int x=find(read()),y=find(read());
if (x!=y) addedge(x,y);
}
for (int i=;i<=q;i++)
{
int x=find(read()),y=find(read());
if (x!=y) addedge(x,y);
if (find(x)==find(y)) printf("%d\n",size[fa[x]]);
else printf("No\n");
}
return ;
}

BZOJ4998 星球联盟(LCT+双连通分量+并查集)的更多相关文章

  1. BZOJ 2959: 长跑 [lct 双连通分量 并查集]

    2959: 长跑 题意:字词加入边,修改点权,询问两点间走一条路径的最大点权和.不一定是树 不是树

  2. BZOJ4998星球联盟——LCT+并查集(LCT动态维护边双连通分量)

    题目描述 在遥远的S星系中一共有N个星球,编号为1…N.其中的一些星球决定组成联盟,以方便相互间的交流.但是,组成 联盟的首要条件就是交通条件.初始时,在这N个星球间有M条太空隧道.每条太空隧道连接两 ...

  3. bzoj4998 星球联盟 LCT + 并查集

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4998 题解 根据题意,就是要动态维护点双,求出一个点双的权值和. 所以这道题就是和 bzoj2 ...

  4. bzoj4998 星球联盟

    bzoj4998 星球联盟 原题链接 题解 先按照输入顺序建一棵树(森林),然后用一个并查集维护联盟的关系,对于不是树上的边\(a-b\),就把\(a-lca(a,b),b-lca(a,b)\)全部合 ...

  5. 【bzoj4998】星球联盟 LCT+并查集

    题目描述 在遥远的S星系中一共有N个星球,编号为1…N.其中的一些星球决定组成联盟,以方便相互间的交流.但是,组成联盟的首要条件就是交通条件.初始时,在这N个星球间有M条太空隧道.每条太空隧道连接两个 ...

  6. bzoj4998: 星球联盟(link-cut-tree)

    题面 bzoj 题解 bzoj2959: 长跑的弱化版 产生了环就并查集维护一下 Code #include<bits/stdc++.h> #define LL long long #de ...

  7. HDU 3749 Financial Crisis (点双连通+并查集)

    <题目连接> 题目大意: 给你一个(保证输入无重边,无自环)无向图,然后有下面Q条询问,每条询问为:问你u点与v点之间有几条(除了首尾两点外,其他点不重复)的路径.如果有0条或1条输出0或 ...

  8. BZOJ 1854: [Scoi2010]游戏 [连通分量 | 并查集 | 二分图匹配]

    题意: 有$n \le 10^6$中物品,每种两个权值$\le 10^4$只能选一个,使得选出的所有权值从1递增,最大递增到多少 一开始想了一个奇怪的规定流量网络流+二分答案做法...然而我还不知道怎 ...

  9. 图-连通分量-DFS-并查集-695. 岛屿的最大面积

    2020-03-15 16:41:45 问题描述: 给定一个包含了一些 0 和 1的非空二维数组 grid , 一个 岛屿 是由四个方向 (水平或垂直) 的 1 (代表土地) 构成的组合.你可以假设二 ...

随机推荐

  1. 【CF995F】Cowmpany Cowmpensation

    [CF995F]Cowmpany Cowmpensation 题面 树形结构,\(n\)个点,给每个节点分配工资\([1,d]\),子节点不能超过父亲节点的工资,问有多少种分配方案 其中\(n\leq ...

  2. Oracle用户和模式,表空间

    oracle 用户与表空间关系 oracle用户与表空间关系用户=商家表=商品表空间=仓库1. 1个商家能有很多商品,1个商品只能属于一个商家2. 1个商品可以放到仓库A,也可以放到仓库B,但不能同时 ...

  3. 【MongoDB安装】MongoDB在centos linux平台安装

    参考:http://www.runoob.com/mongodb/mongodb-linux-install.html 一..下载安装包 下载方式: 1.登录官网download,然后通过xftp传到 ...

  4. Android开发笔记——ListView模块、缓存及性能

    ListView是Android开发中最常用的组件之一.本文将重点说明如何正确使用ListView,以及使用过程中可能遇到的问题. ListView开发模块 图片缓存 可能遇到的问题 一.ListVi ...

  5. 世界杯足彩怎么买划算?机器学习AI告诉你答案(含预测)

    本文首发于InfoQ公众号头条. 四年一度的世界杯又来了,作为没什么时间看球的码农,跟大家一样,靠买买足彩给自己点看球动力和乐趣, 然而总是买错球队,面对各种赔率也不知道怎么买才划算,足彩是不是碰大运 ...

  6. 使用idea写ssm的时候提示源文件夹中的文件找不到

    <context:property-placeholder location="classpath:db.properties"/>这一行idea提示找不到db.pro ...

  7. python-编程从入门到实践

    python-编程从入门到实践 1.python文件后缀名: .py 是Python的源码文件,由Python.exe解释. .pyc 是Python的编译文件.pyc 文件往往代替 py 文件发布: ...

  8. mnist手写数字识别(神经网络)

    import numpy as np from sklearn.neural_network import MLPClassifier path = 'mnist.npz' f = np.load(p ...

  9. i3wm随笔 1

    快捷键 mod+0 退出 mod+v 垂直分割 mod+h 水平风格

  10. Web全景图的原理及实现

    全景图的基本原理 全景图是一种广角图.通过全景播放器可以让观看者身临其境地进入到全景图所记录的场景中去.比如像是这个.这种看起来很高大上的效果其实背后的原理并不复杂. 通常标准的全景图是一张2:1的图 ...