题意

给出一张无向图,要求找出尽量多的长度为2的不同路径(边不可以重复使用,点可以重复使用)

分析

yzy:这是原题 http://www.lydsy.com/JudgeOnline/problem.php?id=4874

首先猜测,一个连通块内,如果是偶数条边,那么所有边都可以用上.如果是奇数条边,那么只会剩下一条边.只要给出一个方案构造的方法,那么正确性就可以从构造方法中得出.

长度为2的路径中中间那个点和两条边都有关.我们可以认为这两条边都属于中间那个点. 于是现在就变成把每条边分配给它的两个端点中的一个.显然,一个连通块最多只能有一个端点被分配奇数条边.

构造方法是这样的:从连通块里拎出一棵生成树,然后把非树边随便分配,接下来从叶节点往上,依次分配所有非树边,从下到上依次确保每个点都被分配了偶数条边.最后除了根节点之外的点一定都被分配了偶数条边,根节点被分配的边数奇偶性和连通块内总边数的奇偶性相同.

#include <cstdio>
#include <vector>
using namespace std;
const int maxn=200005;
struct edge{
int to,next,num;
}lst[maxn<<1];int len=1,first[maxn];
void addedge(int a,int b,int w){
lst[len].to=b;lst[len].next=first[a];lst[len].num=w;
first[a]=len++;
}
int u[maxn],v[maxn],typ[maxn];//typ[i]==0 belong to u[i]
int sum[maxn];
int ufs[maxn];
int find(int x){
return x==ufs[x]?x:ufs[x]=find(ufs[x]);
}
bool ontree[maxn];
void dfs(int x,int p){
for(int pt=first[x];pt;pt=lst[pt].next){
if(lst[pt].to!=p){
dfs(lst[pt].to,x);
if(sum[lst[pt].to]==0){
typ[lst[pt].num]=(v[lst[pt].num]==x);
sum[x]^=1;
}else{
typ[lst[pt].num]=(u[lst[pt].num]==x);
sum[lst[pt].to]=0;
}
}
}
}
vector<int> P[maxn];
int main(){
int n,m;scanf("%d%d",&n,&m);
for(int i=1;i<=m;++i)scanf("%d%d",u+i,v+i);
for(int i=1;i<=n;++i)ufs[i]=i;
for(int i=1;i<=m;++i){
if(find(u[i])==find(v[i])){
typ[i]=0;sum[u[i]]^=1;
}else{
ufs[find(u[i])]=find(v[i]);
addedge(u[i],v[i],i);addedge(v[i],u[i],i);
}
}
for(int i=1;i<=n;++i){
if(ufs[i]==i)dfs(i,0);
}
for(int i=1;i<=m;++i){
if(typ[i]==0)P[u[i]].push_back(v[i]);
else P[v[i]].push_back(u[i]);
}
int ans=0;
for(int i=1;i<=n;++i){
ans=ans+P[i].size()/2;
} printf("%d\n",ans);
for(int i=1;i<=n;++i){
int sz=P[i].size();
for(int j=0;j+1<sz;j+=2){
printf("%d %d %d\n",P[i][j],i,P[i][j+1]);
}
}
return 0;
}

CodeForces 860D Wizard's Tour的更多相关文章

  1. 【Codeforces858F】Wizard's Tour [构造]

    Wizard's Tour Time Limit: 50 Sec  Memory Limit: 512 MB Description Input Output Sample Input 4 5 1 2 ...

  2. Wizard's Tour

    F. Wizard's Tour time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  3. Wizard's Tour CodeForces - 860D (图,构造)

    大意: 给定$n$节点$m$条边无向图, 不保证连通, 求选出最多邻接边, 每条边最多选一次. 上界为$\lfloor\frac{m}{2}\rfloor$, $dfs$贪心划分显然可以达到上界. # ...

  4. Codeforces 666 B. World Tour

    http://codeforces.com/problemset/problem/666/B 题意: 给定一张边权均为1的有向图,求四个不同的点A,B,C,D,使得dis[A][B]+dis[B][C ...

  5. 【Codeforces 1137C】Museums Tour

    Codeforces 1137 C 题意:给一个有向图,一周有\(d\)天,每一个点在每一周的某些时刻会开放,现在可以在这个图上从\(1\)号点开始随意地走,问最多能走到多少个开放的点.一个点如果重复 ...

  6. Codeforces 543 B. World Tour

    http://codeforces.com/problemset/problem/543/B 题意: 给定一张边权均为1的无向图. 问至多可以删除多少边,使得s1到t1的最短路不超过l1,s2到t2的 ...

  7. codeforces 667D D. World Tour(最短路)

    题目链接: D. World Tour time limit per test 5 seconds memory limit per test 512 megabytes input standard ...

  8. CF858F Wizard's Tour 解题报告

    题目描述 给定一张 \(n\) 个点 \(m\) 条边的无向图,每条边连接两个顶点,保证无重边自环,不保证连通. 你想在这张图上进行若干次旅游,每次旅游可以任选一个点 \(x\) 作为起点,再走到一个 ...

  9. CF858F Wizard's Tour

    也许更好的阅读体验 \(\mathcal{Description}\) 给定一张 \(n\) 个点 \(m\) 条边的无向图,每条边连接两个顶点,保证无重边自环,不保证连通. 你想在这张图上进行若干次 ...

随机推荐

  1. 【linux报错】-bash: xhost: command not found

    参考自:http://blog.csdn.net/csdnones/article/details/51513163,感谢原作者解决了我的问题. 执行xhost +,报以下错误,原因是因未没有安装相关 ...

  2. XAF-如何修改内置的编辑器(Property Editor)

    本示例演示在web/win中给 日期选择控制显示出一个时钟及修改时间的控件.效果如下: 如果你装了XAF在这个路径中已经有了这个示例: %PUBLIC%\Documents\DevExpress De ...

  3. [转]WIN2008 IIS7的日期格式

    最近项目升级服务器从32位升级到64位的WIN2008,日期显示格式非我们所期望的yyyy-M-d格式,原以为修改控制面板的日期格式即可,可是不行. 修改注册表问题解决. 修改方法: 运行注册表编辑器 ...

  4. Linux 防火墙设置(转)

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3 ...

  5. Lua学习笔记(8): 元表

    元表 Lua中提供了元表(Metatable),其实这个元表就比较像面向对象中的类了,可以通过给某些特殊的标识符赋值达到重载的效果,这些特殊的标识符有: 名称 功能 __index 元表的索引方法 _ ...

  6. Bellman-ford 模板

    #include<bits/stdc++.h> const int inf=0x3f3f3f3f; ; struct edge{ int u,v;//两个点 int w; //权值 Edg ...

  7. 会声会影2018提示dll文件丢失怎么办?

    一些会声会影2018用户,在安装.使用软件的过程中,会出现dll缺失的提示,导致软件无法打开,那么,出现这一问题要怎么解决.接下来小编为大家具体介绍下两种解决方法. 图1:dll丢失提示 打开会声会影 ...

  8. JavaScript学习笔记(五)——类型、转换、相等、字符串

    第六章 类型 相等 转换等 一.类型 1 typeof(); typeof是一个内置的JavaScript运算符,可用于探测其操作数的类型. 例: <script language=" ...

  9. Javascript 初学笔记

    变量作用域 自 ES2015 起,JS 引入let 和 const 关键词定义变量的块作用域(Block Scope). var 仅支持全局作用域(Global Scope)和函数作用域(Functi ...

  10. Pearson Distance

    Pearson Distance: where: 1.  is the covariance 2.  is the standard deviation of 3.  is the standard ...