CodeForces 860D Wizard's Tour
题意
给出一张无向图,要求找出尽量多的长度为2的不同路径(边不可以重复使用,点可以重复使用)
分析
yzy:这是原题 http://www.lydsy.com/JudgeOnline/problem.php?id=4874
首先猜测,一个连通块内,如果是偶数条边,那么所有边都可以用上.如果是奇数条边,那么只会剩下一条边.只要给出一个方案构造的方法,那么正确性就可以从构造方法中得出.
长度为2的路径中中间那个点和两条边都有关.我们可以认为这两条边都属于中间那个点. 于是现在就变成把每条边分配给它的两个端点中的一个.显然,一个连通块最多只能有一个端点被分配奇数条边.
构造方法是这样的:从连通块里拎出一棵生成树,然后把非树边随便分配,接下来从叶节点往上,依次分配所有非树边,从下到上依次确保每个点都被分配了偶数条边.最后除了根节点之外的点一定都被分配了偶数条边,根节点被分配的边数奇偶性和连通块内总边数的奇偶性相同.
#include <cstdio>
#include <vector>
using namespace std;
const int maxn=200005;
struct edge{
int to,next,num;
}lst[maxn<<1];int len=1,first[maxn];
void addedge(int a,int b,int w){
lst[len].to=b;lst[len].next=first[a];lst[len].num=w;
first[a]=len++;
}
int u[maxn],v[maxn],typ[maxn];//typ[i]==0 belong to u[i]
int sum[maxn];
int ufs[maxn];
int find(int x){
return x==ufs[x]?x:ufs[x]=find(ufs[x]);
}
bool ontree[maxn];
void dfs(int x,int p){
for(int pt=first[x];pt;pt=lst[pt].next){
if(lst[pt].to!=p){
dfs(lst[pt].to,x);
if(sum[lst[pt].to]==0){
typ[lst[pt].num]=(v[lst[pt].num]==x);
sum[x]^=1;
}else{
typ[lst[pt].num]=(u[lst[pt].num]==x);
sum[lst[pt].to]=0;
}
}
}
}
vector<int> P[maxn];
int main(){
int n,m;scanf("%d%d",&n,&m);
for(int i=1;i<=m;++i)scanf("%d%d",u+i,v+i);
for(int i=1;i<=n;++i)ufs[i]=i;
for(int i=1;i<=m;++i){
if(find(u[i])==find(v[i])){
typ[i]=0;sum[u[i]]^=1;
}else{
ufs[find(u[i])]=find(v[i]);
addedge(u[i],v[i],i);addedge(v[i],u[i],i);
}
}
for(int i=1;i<=n;++i){
if(ufs[i]==i)dfs(i,0);
}
for(int i=1;i<=m;++i){
if(typ[i]==0)P[u[i]].push_back(v[i]);
else P[v[i]].push_back(u[i]);
}
int ans=0;
for(int i=1;i<=n;++i){
ans=ans+P[i].size()/2;
}
printf("%d\n",ans);
for(int i=1;i<=n;++i){
int sz=P[i].size();
for(int j=0;j+1<sz;j+=2){
printf("%d %d %d\n",P[i][j],i,P[i][j+1]);
}
}
return 0;
}
CodeForces 860D Wizard's Tour的更多相关文章
- 【Codeforces858F】Wizard's Tour [构造]
Wizard's Tour Time Limit: 50 Sec Memory Limit: 512 MB Description Input Output Sample Input 4 5 1 2 ...
- Wizard's Tour
F. Wizard's Tour time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...
- Wizard's Tour CodeForces - 860D (图,构造)
大意: 给定$n$节点$m$条边无向图, 不保证连通, 求选出最多邻接边, 每条边最多选一次. 上界为$\lfloor\frac{m}{2}\rfloor$, $dfs$贪心划分显然可以达到上界. # ...
- Codeforces 666 B. World Tour
http://codeforces.com/problemset/problem/666/B 题意: 给定一张边权均为1的有向图,求四个不同的点A,B,C,D,使得dis[A][B]+dis[B][C ...
- 【Codeforces 1137C】Museums Tour
Codeforces 1137 C 题意:给一个有向图,一周有\(d\)天,每一个点在每一周的某些时刻会开放,现在可以在这个图上从\(1\)号点开始随意地走,问最多能走到多少个开放的点.一个点如果重复 ...
- Codeforces 543 B. World Tour
http://codeforces.com/problemset/problem/543/B 题意: 给定一张边权均为1的无向图. 问至多可以删除多少边,使得s1到t1的最短路不超过l1,s2到t2的 ...
- codeforces 667D D. World Tour(最短路)
题目链接: D. World Tour time limit per test 5 seconds memory limit per test 512 megabytes input standard ...
- CF858F Wizard's Tour 解题报告
题目描述 给定一张 \(n\) 个点 \(m\) 条边的无向图,每条边连接两个顶点,保证无重边自环,不保证连通. 你想在这张图上进行若干次旅游,每次旅游可以任选一个点 \(x\) 作为起点,再走到一个 ...
- CF858F Wizard's Tour
也许更好的阅读体验 \(\mathcal{Description}\) 给定一张 \(n\) 个点 \(m\) 条边的无向图,每条边连接两个顶点,保证无重边自环,不保证连通. 你想在这张图上进行若干次 ...
随机推荐
- dat类型文件入库后校验数据有问题
一.问题: dat或者txt文件入库后,字段进行正则校验报出不应该出现的错误 二.排查: (1)根据报出的错误,把错误日志中的字串单独提取出来,进行正则校验发现没有问题 (2)可以想到,要不是程序问题 ...
- Session丢失——解决方案
先抄下别人的作业(原帖:http://www.cnblogs.com/zhc088/archive/2011/07/24/2115497.html) Session丢失已经是一种习以为常的问题了,在自 ...
- Yii2 使用 bootboxJS美化confirm窗口
有些关键操作比如删除,我们在执行前一般先弹出来个confirm确认窗口. 在Yii2中为一个操作添加confirm确认很容易.只需在链接出添加一个‘data-confirm' => '确实要添加 ...
- Javascript库,前端框架(UI框架),模板引擎
JavaScript库:JQuery,undoscore,Zepto 纯Javascript语言封装, 前端框架(UI框架):Bootstrap,Foundation,Semantic UI,Pure ...
- 六、EnterpriseFrameWork框架基础功能之权限管理
回<[开源]EnterpriseFrameWork框架系列文章索引> 从本章开始进入框架的第二块内容“EnterpriseFrameWork框架的基础功能”,包括:权限管理.字典数据管理. ...
- Python单元测试--unittest(一)
unittest模块是Python中自带的一个单元测试模块,我们可以用来做代码级的单元测试. 在unittest模块中,我们主要用到的有四个子模块,他们分别是: 1)TestCase:用来写编写逐条的 ...
- sql server 批量备份数据库
很多时候,我们都需要将数据库进行备份,当服务器上数据库较多时,不可能一个数据库创建一个定时任务进行备份,这时,就需要进行批量的数据库备份操作,好了,废话不多说,具体实现语句如下: --开启文件夹权限 ...
- 4星|《财经》2018年第13期:年轻人大多从大三和大四起开始就从QQ向微信转移
<财经>2018年第13期 总第530期 旬刊 本期主要话题是快递业,其他我感兴趣的重要话题还有:香港9价HPV疫苗断供风波:华盛顿邮报被贝佐斯收购后这几年的变化:北京二中朝阳学校的划片风 ...
- Composer指南
安装 windows中安装Composer 一般来说,windows下安装composer有两种办法,一种是直接下载并运行Composer-Setup.exe,这种方法在中国似乎很难完成安装.另一种就 ...
- Amazon 成功的秘訣是…
從任何的標準去看,今日的 Amazon,都是一家超級成功的企業 — 它的線上書城和其他 B2C 電子商務業務,全球第一,年營業額超過 200 億美金.它的 AWS (Amazon Web Servic ...