题意

给出一张无向图,要求找出尽量多的长度为2的不同路径(边不可以重复使用,点可以重复使用)

分析

yzy:这是原题 http://www.lydsy.com/JudgeOnline/problem.php?id=4874

首先猜测,一个连通块内,如果是偶数条边,那么所有边都可以用上.如果是奇数条边,那么只会剩下一条边.只要给出一个方案构造的方法,那么正确性就可以从构造方法中得出.

长度为2的路径中中间那个点和两条边都有关.我们可以认为这两条边都属于中间那个点. 于是现在就变成把每条边分配给它的两个端点中的一个.显然,一个连通块最多只能有一个端点被分配奇数条边.

构造方法是这样的:从连通块里拎出一棵生成树,然后把非树边随便分配,接下来从叶节点往上,依次分配所有非树边,从下到上依次确保每个点都被分配了偶数条边.最后除了根节点之外的点一定都被分配了偶数条边,根节点被分配的边数奇偶性和连通块内总边数的奇偶性相同.

#include <cstdio>
#include <vector>
using namespace std;
const int maxn=200005;
struct edge{
int to,next,num;
}lst[maxn<<1];int len=1,first[maxn];
void addedge(int a,int b,int w){
lst[len].to=b;lst[len].next=first[a];lst[len].num=w;
first[a]=len++;
}
int u[maxn],v[maxn],typ[maxn];//typ[i]==0 belong to u[i]
int sum[maxn];
int ufs[maxn];
int find(int x){
return x==ufs[x]?x:ufs[x]=find(ufs[x]);
}
bool ontree[maxn];
void dfs(int x,int p){
for(int pt=first[x];pt;pt=lst[pt].next){
if(lst[pt].to!=p){
dfs(lst[pt].to,x);
if(sum[lst[pt].to]==0){
typ[lst[pt].num]=(v[lst[pt].num]==x);
sum[x]^=1;
}else{
typ[lst[pt].num]=(u[lst[pt].num]==x);
sum[lst[pt].to]=0;
}
}
}
}
vector<int> P[maxn];
int main(){
int n,m;scanf("%d%d",&n,&m);
for(int i=1;i<=m;++i)scanf("%d%d",u+i,v+i);
for(int i=1;i<=n;++i)ufs[i]=i;
for(int i=1;i<=m;++i){
if(find(u[i])==find(v[i])){
typ[i]=0;sum[u[i]]^=1;
}else{
ufs[find(u[i])]=find(v[i]);
addedge(u[i],v[i],i);addedge(v[i],u[i],i);
}
}
for(int i=1;i<=n;++i){
if(ufs[i]==i)dfs(i,0);
}
for(int i=1;i<=m;++i){
if(typ[i]==0)P[u[i]].push_back(v[i]);
else P[v[i]].push_back(u[i]);
}
int ans=0;
for(int i=1;i<=n;++i){
ans=ans+P[i].size()/2;
} printf("%d\n",ans);
for(int i=1;i<=n;++i){
int sz=P[i].size();
for(int j=0;j+1<sz;j+=2){
printf("%d %d %d\n",P[i][j],i,P[i][j+1]);
}
}
return 0;
}

CodeForces 860D Wizard's Tour的更多相关文章

  1. 【Codeforces858F】Wizard's Tour [构造]

    Wizard's Tour Time Limit: 50 Sec  Memory Limit: 512 MB Description Input Output Sample Input 4 5 1 2 ...

  2. Wizard's Tour

    F. Wizard's Tour time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  3. Wizard's Tour CodeForces - 860D (图,构造)

    大意: 给定$n$节点$m$条边无向图, 不保证连通, 求选出最多邻接边, 每条边最多选一次. 上界为$\lfloor\frac{m}{2}\rfloor$, $dfs$贪心划分显然可以达到上界. # ...

  4. Codeforces 666 B. World Tour

    http://codeforces.com/problemset/problem/666/B 题意: 给定一张边权均为1的有向图,求四个不同的点A,B,C,D,使得dis[A][B]+dis[B][C ...

  5. 【Codeforces 1137C】Museums Tour

    Codeforces 1137 C 题意:给一个有向图,一周有\(d\)天,每一个点在每一周的某些时刻会开放,现在可以在这个图上从\(1\)号点开始随意地走,问最多能走到多少个开放的点.一个点如果重复 ...

  6. Codeforces 543 B. World Tour

    http://codeforces.com/problemset/problem/543/B 题意: 给定一张边权均为1的无向图. 问至多可以删除多少边,使得s1到t1的最短路不超过l1,s2到t2的 ...

  7. codeforces 667D D. World Tour(最短路)

    题目链接: D. World Tour time limit per test 5 seconds memory limit per test 512 megabytes input standard ...

  8. CF858F Wizard's Tour 解题报告

    题目描述 给定一张 \(n\) 个点 \(m\) 条边的无向图,每条边连接两个顶点,保证无重边自环,不保证连通. 你想在这张图上进行若干次旅游,每次旅游可以任选一个点 \(x\) 作为起点,再走到一个 ...

  9. CF858F Wizard's Tour

    也许更好的阅读体验 \(\mathcal{Description}\) 给定一张 \(n\) 个点 \(m\) 条边的无向图,每条边连接两个顶点,保证无重边自环,不保证连通. 你想在这张图上进行若干次 ...

随机推荐

  1. nohub用法

    在应用Unix/Linux时,我们一般想让某个程序在后台运行,于是我们将常会用 & 在程序结尾来让程序自动运行.比如我们要运行mysql在后台: /usr/local/mysql/bin/my ...

  2. python中快速获取本地时区当天0点时间戳的一种方法

    如下所示,看了网上的几种方法,这种方法算是代码量比较小的,同时可以保证求的是本地时区的0点时间戳,返回的是浮点数,需要的话自己转一下int In [1]: import time In [2]: fr ...

  3. KVM虚拟机无法启动

    一.启动虚拟机报错: [root@KVM ~]# virsh start node-mssql-test01 error: Failed to start domain node-mssql-test ...

  4. OpenStack入门篇(五)之KVM性能优化及IO缓存介绍

    1.KVM的性能优化,介绍CPU,内存,IO性能优化 KVM CPU-->qemu进行模拟ring 3-->用户应用 (用户态,用户空间)ring 0-->操作系统 (内核态,内核空 ...

  5. 一个奇怪的JS函数

    今天在分析一个jQuery插件源码的时候,发现了一个奇怪的函数. 这个函数的目的是为数字补零,如传入7,输出07,传入12输出12.由于是对时间补零,只截取后两位. // add leading ze ...

  6. jquery.validate使用 - 5

    一些常用的验证脚本 不会写js了,只能从网上找一些常用的验证脚本. // 手机号码验证jQuery.validator.addMethod("mobile", function(v ...

  7. axios封装(一)基础配置

    axios 是目前流行的Promise网络请求库,在浏览器端他通过 xhr方式创建ajax请求.在node环境下,通过 http 库创建网络请求. axios 提供了丰富的配置,这里讲一讲我在工作中通 ...

  8. 原生WebGL场景中绘制多个圆锥圆柱

    前几天解决了原生WebGL开发中的一个问题,就是在一个场景中绘制多个几何网格特征不同的模型,比如本文所做的绘制多个圆锥和圆柱在同一个场景中,今天抽空把解决的办法记录下来,同时也附上代码.首先声明,圆柱 ...

  9. 使用Photon引擎进行unity网络游戏开发(一)——Photon引擎简介

    使用Photon引擎进行unity网络游戏开发(一)--Photon引擎简介 Photon PUN Unity 网络游戏开发 Photon引擎简介: 1. 服务器引擎: 服 务 器 引 擎 介 绍 服 ...

  10. 785. Is Graph Bipartite?

    Given an undirected graph, return true if and only if it is bipartite. Recall that a graph is bipart ...