In geometry the Fermat point of a triangle, also called Torricelli point, is a point such that the total distance from the three vertices of the triangle to the point is the minimum. It is so named because this problem is first raised by Fermat in a private letter. In the following picture, P 0 is the Fermat point. You may have already known the property that: 

Alice and Bob are learning geometry. Recently they are studying about the Fermat Point.

Alice: I wonder whether there is a similar point for quadrangle.

Bob: I think there must exist one.

Alice: Then how to know where it is? How to prove?

Bob: I don’t know. Wait… the point may hold the similar property as the case in triangle.

Alice: It sounds reasonable. Why not use our computer to solve the problem? Find the Fermat point, and then verify your assumption.

Bob: A good idea.

So they ask you, the best programmer, to solve it. Find the Fermat point for a quadrangle, i.e. find a point such that the total distance from the four vertices of the quadrangle to that point is the minimum.

 

Input

The input contains no more than 1000 test cases.

Each test case is a single line which contains eight float numbers, and it is formatted as below:

1 y 1 x 2 y 2 x 3 y 3 x 4 y 4

i, y i are the x- and y-coordinates of the ith vertices of a quadrangle. They are float numbers and satisfy 0 ≤ x i ≤ 1000 and 0 ≤ y i ≤ 1000 (i = 1, …, 4).

The input is ended by eight -1.

 

Output

For each test case, find the Fermat point, and output the total distance from the four vertices to that point. The result should be rounded to four digits after the decimal point.
 

Sample Input

0 0 1 1 1 0 0 1
1 1 1 1 1 1 1 1
-1 -1 -1 -1 -1 -1 -1 -1
 

四边形费马点

平面四边形中费马点证明相对于三角形中较为简易,也较容易研究。
(1)在凸四边形ABCD中,费马点为两对角线AC、BD交点P。
(2)在凹四边形ABCD中,费马点为凹顶点D(P)。

平面四边形费马点证明图形

经过上述的推导,我们即得出了三角形中费马点的找法:当三角形有一个内角大于或等于120°的时候,费马点就是这个内角的顶点;如果三个内角都在120°以内,那么,费马点就是使得费马点与三角形三顶点的连线两两夹角为120°的点。另一种更为简捷的证明 :设O为三顶点连线最短点,以A为圆心AO为半径做圆P。将圆P视作一面镜子。显然O点应该为B出发的光线经过镜子到C的反射点(如果不是,反射点为O',就会有BO’+ CO' < BO+ CO,而AO’= AO,就会有 AO’+ BO’+ CO' < AO + BO + CO)。
不失一般性。O点对于B、C为圆心的镜子也成立。因此根据对称性AO、BO、CO之间夹角都是120°
(补充说明:AO、BO、CO是每个镜子的法线)
 
取四个点其中一个点或者四个点两两连线的交点,各算一遍即可
感受:赛场上没有及时证明猜想,导致smilewsw一直不敢敲...,几何证明实力太弱,虽然想到镜面反射来证最短,但是没有具体转化
这是萌萌smilewsw代码
 
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std; const double eps=1e-10; double add(double a,double b)
{
if(abs(a+b)<eps*(abs(a)+abs(b))) return 0;
return a+b;
} struct point
{
double x,y;
point () {}
point (double x,double y) : x(x),y(y){ }
point operator + (point p)
{
return point (add(x,p.x),add(y,p.y));
}
point operator - (point p)
{
return point (add(x,-p.x),add(y,-p.y));
}
point operator * (double d)
{
return point (x*d,y*d);
}
double dot(point p)
{
return add(x*p.x,y*p.y);
}
double det(point p)
{
return add(x*p.y,-y*p.x);
}
}; bool on_seg(point p1,point p2,point q)
{
return (p1-q).det(p2-q)==0&&(p1-q).dot(p2-q)<=0;
} point intersection(point p1,point p2,point q1,point q2)
{
return p1+(p2-p1)*((q2-q1).det(q1-p1)/(q2-q1).det(p2-p1));
} bool cmp_x(const point&p,const point& q)
{
if(p.x!=q.x) return p.x<q.x;
return p.y<q.y;
} vector<point> convex_hull(point*ps,int n)
{
sort(ps,ps+n,cmp_x);
//for(int i=0;i<n;i++) printf("x=%.f %.f")
int k=0;
vector<point> qs(n*2);
for(int i=0;i<n;i++){
while(k>1&&(qs[k-1]-qs[k-2]).det(ps[i]-qs[k-1])<=0) k--;
qs[k++]=ps[i];
}
for(int i=n-2,t=k;i>=0;i--){
while(k>t&&(qs[k-1]-qs[k-2]).det(ps[i]-qs[k-1])<=0) k--;
qs[k++]=ps[i];
}
qs.resize(k-1);
return qs;
} double dis(point p1,point p2)
{
return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));
}
bool equ(point p1,point p2)
{
if(fabs(p1.x-p2.x)<eps&&fabs(p1.y-p2.y)<eps)
return true;
return false;
}
int main()
{
point p[10];
for(int i=0;i<4;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
while(p[0].x!=-1&&p[0].y!=-1)
{
vector <point> m;
double minn=100000000,d;
m=convex_hull(p,4);//检查是否四边形
if(m.size()==4)//如果是四边形则加入对角线交点考虑
minn=dis(m[1],m[3])+dis(m[0],m[2]);
for(int i=0;i<4;i++)
{
d=0;
for(int j=0;j<4;j++)
d+=dis(p[i],p[j]);
minn=min(minn,d);
}
printf("%.4f\n",minn);
for(int i=0;i<4;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
}
return 0;
}

  

hdu 3694 10 福州 现场 E - Fermat Point in Quadrangle 费马点 计算几何 难度:1的更多相关文章

  1. hdu 3695 10 福州 现场 F - Computer Virus on Planet Pandora 暴力 ac自动机 难度:1

    F - Computer Virus on Planet Pandora Time Limit:2000MS     Memory Limit:128000KB     64bit IO Format ...

  2. hdu 3697 10 福州 现场 H - Selecting courses 贪心 难度:0

    Description     A new Semester is coming and students are troubling for selecting courses. Students ...

  3. hdu 3699 10 福州 现场 J - A hard Aoshu Problem 暴力 难度:0

    Description Math Olympiad is called “Aoshu” in China. Aoshu is very popular in elementary schools. N ...

  4. hdu 3696 10 福州 现场 G - Farm Game DP+拓扑排序 or spfa+超级源 难度:0

    Description “Farm Game” is one of the most popular games in online community. In the community each ...

  5. hdu 3682 10 杭州 现场 C - To Be an Dream Architect 简单容斥 难度:1

    C - To Be an Dream Architect Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d &a ...

  6. hdu 3685 10 杭州 现场 F - Rotational Painting 重心 计算几何 难度:1

    F - Rotational Painting Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & % ...

  7. hdu 3682 10 杭州 现场 C To Be an Dream Architect 容斥 难度:0

    C - To Be an Dream Architect Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d &a ...

  8. hdu 3687 10 杭州 现场 H - National Day Parade 水题 难度:0

    H - National Day Parade Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & % ...

  9. hdu 4770 13 杭州 现场 A - Lights Against Dudely 暴力 bfs 状态压缩DP 难度:1

    Description Harry: "But Hagrid. How am I going to pay for all of this? I haven't any money.&quo ...

随机推荐

  1. 双态运维分享之二: 服务型CMDB的消费场景

    近年来,CMDB在IT运维管理中的价值逐步得到认可,使用CMDB的期望值也日益增长.然而,CMDB实施和维护的高成本却一直是建设者们的痛点.那么今天,我们来探讨一下如何通过消费来持续驱动CMDB的逐步 ...

  2. 【spring mvc】application context中【bean】的生命周期

    生命周期过程 主要分为四部分: 一.实例化 1. 当调用者通过 getBean( name )向 容器寻找Bean 时,如果容器注册了org.springframework.beans.factory ...

  3. Hadoop权限认证的执行流程

    Hadoop分布式文件系统实现了一个和POSIX系统类似的文件和目录的权限模型.每个文件和目录有一个所有者(owner)和一个组(group).文件或目录对其所有者.同组的其他用户以及所有其他用户分别 ...

  4. springboot的相关信息

    Maven的配置:zzp_settings.xml <?xml version="1.0" encoding="UTF-8"?> <setti ...

  5. 时间格式—My97DatePicker控件使用

    一.My97DatePicker控件使用(2步):   1:JSP页面:( class="Wdate" 显示控件图标) 引入控件包中的脚本: <script type=&qu ...

  6. 22. Generate Parentheses(回溯)

    Given n pairs of parentheses, write a function to generate all combinations of well-formed parenthes ...

  7. 32Sql数据库的插入

    上一节讲了数据库的连接,本例直接将数据库的插入操作,重点还是QSqlQuery类 QSqlQuery query; //新建二维表 query.exec("CREATE TABLE stud ...

  8. nats

    NATS is a family of open source products that are tightly integrated but can be deployed independent ...

  9. Tomcat java.lang.OutOfMemoryError: PermGen space error

    Often time, Tomcat may hits the following java.lang.OutOfMemoryError: PermGen space error. java.lang ...

  10. 前端学习笔记之JavaScript

    JavaScript概述 JavaScript的历史 1992年Nombas开发出C-minus-minus(C--)的嵌入式脚本语言(最初绑定在CEnvi软件中),后将其改名ScriptEase(客 ...