In geometry the Fermat point of a triangle, also called Torricelli point, is a point such that the total distance from the three vertices of the triangle to the point is the minimum. It is so named because this problem is first raised by Fermat in a private letter. In the following picture, P 0 is the Fermat point. You may have already known the property that: 

Alice and Bob are learning geometry. Recently they are studying about the Fermat Point.

Alice: I wonder whether there is a similar point for quadrangle.

Bob: I think there must exist one.

Alice: Then how to know where it is? How to prove?

Bob: I don’t know. Wait… the point may hold the similar property as the case in triangle.

Alice: It sounds reasonable. Why not use our computer to solve the problem? Find the Fermat point, and then verify your assumption.

Bob: A good idea.

So they ask you, the best programmer, to solve it. Find the Fermat point for a quadrangle, i.e. find a point such that the total distance from the four vertices of the quadrangle to that point is the minimum.

 

Input

The input contains no more than 1000 test cases.

Each test case is a single line which contains eight float numbers, and it is formatted as below:

1 y 1 x 2 y 2 x 3 y 3 x 4 y 4

i, y i are the x- and y-coordinates of the ith vertices of a quadrangle. They are float numbers and satisfy 0 ≤ x i ≤ 1000 and 0 ≤ y i ≤ 1000 (i = 1, …, 4).

The input is ended by eight -1.

 

Output

For each test case, find the Fermat point, and output the total distance from the four vertices to that point. The result should be rounded to four digits after the decimal point.
 

Sample Input

0 0 1 1 1 0 0 1
1 1 1 1 1 1 1 1
-1 -1 -1 -1 -1 -1 -1 -1
 

四边形费马点

平面四边形中费马点证明相对于三角形中较为简易,也较容易研究。
(1)在凸四边形ABCD中,费马点为两对角线AC、BD交点P。
(2)在凹四边形ABCD中,费马点为凹顶点D(P)。

平面四边形费马点证明图形

经过上述的推导,我们即得出了三角形中费马点的找法:当三角形有一个内角大于或等于120°的时候,费马点就是这个内角的顶点;如果三个内角都在120°以内,那么,费马点就是使得费马点与三角形三顶点的连线两两夹角为120°的点。另一种更为简捷的证明 :设O为三顶点连线最短点,以A为圆心AO为半径做圆P。将圆P视作一面镜子。显然O点应该为B出发的光线经过镜子到C的反射点(如果不是,反射点为O',就会有BO’+ CO' < BO+ CO,而AO’= AO,就会有 AO’+ BO’+ CO' < AO + BO + CO)。
不失一般性。O点对于B、C为圆心的镜子也成立。因此根据对称性AO、BO、CO之间夹角都是120°
(补充说明:AO、BO、CO是每个镜子的法线)
 
取四个点其中一个点或者四个点两两连线的交点,各算一遍即可
感受:赛场上没有及时证明猜想,导致smilewsw一直不敢敲...,几何证明实力太弱,虽然想到镜面反射来证最短,但是没有具体转化
这是萌萌smilewsw代码
 
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std; const double eps=1e-10; double add(double a,double b)
{
if(abs(a+b)<eps*(abs(a)+abs(b))) return 0;
return a+b;
} struct point
{
double x,y;
point () {}
point (double x,double y) : x(x),y(y){ }
point operator + (point p)
{
return point (add(x,p.x),add(y,p.y));
}
point operator - (point p)
{
return point (add(x,-p.x),add(y,-p.y));
}
point operator * (double d)
{
return point (x*d,y*d);
}
double dot(point p)
{
return add(x*p.x,y*p.y);
}
double det(point p)
{
return add(x*p.y,-y*p.x);
}
}; bool on_seg(point p1,point p2,point q)
{
return (p1-q).det(p2-q)==0&&(p1-q).dot(p2-q)<=0;
} point intersection(point p1,point p2,point q1,point q2)
{
return p1+(p2-p1)*((q2-q1).det(q1-p1)/(q2-q1).det(p2-p1));
} bool cmp_x(const point&p,const point& q)
{
if(p.x!=q.x) return p.x<q.x;
return p.y<q.y;
} vector<point> convex_hull(point*ps,int n)
{
sort(ps,ps+n,cmp_x);
//for(int i=0;i<n;i++) printf("x=%.f %.f")
int k=0;
vector<point> qs(n*2);
for(int i=0;i<n;i++){
while(k>1&&(qs[k-1]-qs[k-2]).det(ps[i]-qs[k-1])<=0) k--;
qs[k++]=ps[i];
}
for(int i=n-2,t=k;i>=0;i--){
while(k>t&&(qs[k-1]-qs[k-2]).det(ps[i]-qs[k-1])<=0) k--;
qs[k++]=ps[i];
}
qs.resize(k-1);
return qs;
} double dis(point p1,point p2)
{
return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));
}
bool equ(point p1,point p2)
{
if(fabs(p1.x-p2.x)<eps&&fabs(p1.y-p2.y)<eps)
return true;
return false;
}
int main()
{
point p[10];
for(int i=0;i<4;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
while(p[0].x!=-1&&p[0].y!=-1)
{
vector <point> m;
double minn=100000000,d;
m=convex_hull(p,4);//检查是否四边形
if(m.size()==4)//如果是四边形则加入对角线交点考虑
minn=dis(m[1],m[3])+dis(m[0],m[2]);
for(int i=0;i<4;i++)
{
d=0;
for(int j=0;j<4;j++)
d+=dis(p[i],p[j]);
minn=min(minn,d);
}
printf("%.4f\n",minn);
for(int i=0;i<4;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
}
return 0;
}

  

hdu 3694 10 福州 现场 E - Fermat Point in Quadrangle 费马点 计算几何 难度:1的更多相关文章

  1. hdu 3695 10 福州 现场 F - Computer Virus on Planet Pandora 暴力 ac自动机 难度:1

    F - Computer Virus on Planet Pandora Time Limit:2000MS     Memory Limit:128000KB     64bit IO Format ...

  2. hdu 3697 10 福州 现场 H - Selecting courses 贪心 难度:0

    Description     A new Semester is coming and students are troubling for selecting courses. Students ...

  3. hdu 3699 10 福州 现场 J - A hard Aoshu Problem 暴力 难度:0

    Description Math Olympiad is called “Aoshu” in China. Aoshu is very popular in elementary schools. N ...

  4. hdu 3696 10 福州 现场 G - Farm Game DP+拓扑排序 or spfa+超级源 难度:0

    Description “Farm Game” is one of the most popular games in online community. In the community each ...

  5. hdu 3682 10 杭州 现场 C - To Be an Dream Architect 简单容斥 难度:1

    C - To Be an Dream Architect Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d &a ...

  6. hdu 3685 10 杭州 现场 F - Rotational Painting 重心 计算几何 难度:1

    F - Rotational Painting Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & % ...

  7. hdu 3682 10 杭州 现场 C To Be an Dream Architect 容斥 难度:0

    C - To Be an Dream Architect Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d &a ...

  8. hdu 3687 10 杭州 现场 H - National Day Parade 水题 难度:0

    H - National Day Parade Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & % ...

  9. hdu 4770 13 杭州 现场 A - Lights Against Dudely 暴力 bfs 状态压缩DP 难度:1

    Description Harry: "But Hagrid. How am I going to pay for all of this? I haven't any money.&quo ...

随机推荐

  1. 转!!java 堆栈内存 对象实例等查看

    https://blog.csdn.net/fenglibing/article/details/6411999

  2. JS模块化方案

  3. 新安装和已安装nginx如何添加未编译安装模块/补丁

    新安装和已安装nginx如何添加未编译安装模块/补丁 --http://www.apelearn.com/bbs/forum.php?mod=viewthread&tid=10485& ...

  4. eclipse怎么导出可执行jar包

    在eclpse中找到你要导出的java程序 选中它 单击文件 -->export 在弹出的export对话框中找到 jar File 单击选中-->next 按图示顺序依次 选好你的jav ...

  5. CSLA.Net学习(2)

    采用CSLA.net 2.1.4.0版本的书写方式: using System; using System.ComponentModel; using Csla.Validation; using S ...

  6. Openstack(三)Haproxy+Keepalived双机

    3.1部署keepalived 3.1.1下载keepalived源码包,并解压 # wget http://www.keepalived.org/software/keepalived-1.4.2. ...

  7. glassfish3新建domain

    下载路径:http://download.oracle.com/glassfish/3.1.2.2/release/index.html .zip (解压缩)cd /glassfish3/glassf ...

  8. linux创建新用户后shell无法自动补全命令或使用基本的shell命令

    新建一用户lqding,切换到该用户下 root@lqding:~# su - lqding$$ echo $USERlqding$ ^[[A 提示符仅仅是一个$,很奇怪.输入命令,用TAB键也无法补 ...

  9. 4.4 Routing -- Specifying A Route's Model

    一.概述 应用程序中,templates被models支持.但是templates是如何知道它们应该显示哪个model呢? 例如,你有一个photos模板,它是如何知道它该呈现哪个model呢? 这就 ...

  10. C# 使用BackgroundWorker实现WinForm异步

    写了一个基于BackgorundWorker演示异步操作的例子.由于这个理基本上实现了BackgorundWorker的大部分功能:异步操作的启动.操作结束后的回调.异步操作的撤销和进度报告等等.尽管 ...