CF 483B. Friends and Presents 数学 (二分) 难度:1
1 second
256 megabytes
standard input
standard output
You have two friends. You want to present each of them several positive integers. You want to present cnt1 numbers to the first friend and cnt2 numbers to the second friend. Moreover, you want all presented numbers to be distinct, that also means that no number should be presented to both friends.
In addition, the first friend does not like the numbers that are divisible without remainder by prime number x. The second one does not like the numbers that are divisible without remainder by prime number y. Of course, you're not going to present your friends numbers they don't like.
Your task is to find such minimum number v, that you can form presents using numbers from a set 1, 2, ..., v. Of course you may choose not to present some numbers at all.
A positive integer number greater than 1 is called prime if it has no positive divisors other than 1 and itself.
The only line contains four positive integers cnt1, cnt2, x, y (1 ≤ cnt1, cnt2 < 10^9; cnt1 + cnt2 ≤ 10^9; 2 ≤ x < y ≤ 3·10^4) — the numbers that are described in the statement. It is guaranteed that numbers x, y are prime.
Print a single integer — the answer to the problem.
3 1 2 3
5
1 3 2 3
4
#include<cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
ll x,y,cnt1,cnt2;
ll gcd(ll a,ll b){
if(b==0)return a;
return gcd(b,a%b);
}
ll pos(ll a){
if(a>=0)return a;
return 0;
}
int main(){
scanf("%I64d%I64d%I64d%I64d",&cnt1,&cnt2,&x,&y);
ll d=gcd(x,y);
ll lcm=x*y/d;
ll na=lcm-lcm/x-lcm/y+1;
ll nb=lcm/x-1;
ll nc=lcm/y-1;
ll sumn=na+nb+nc;
ll t=(cnt1+cnt2)/sumn;
t=max(t,cnt2/(na+nb));
t=max(t,cnt1/(na+nc));
ll ta=na*t;
ll tb=nb*t;
ll tc=nc*t;
ll ans=lcm*t;
if((pos(cnt2-tb)+pos(cnt1-tc))<=ta)ans--;
else {
ll r=0x7fffffff;
ll r0=pos(cnt2-tb)+pos(cnt1-tc)-ta;
if(r0>=0&&cnt2>=tb&&cnt1>=tc)r=min(r,r0); ll r1=x*(cnt1-tc-ta)/(x-1);
ll tr11=cnt1-tc-ta+(r1/x-1);
if(tr11/x==r1/x-1)r1=min(r1,tr11);
r1=max(r1,x*(cnt2-tb));
if(cnt1>=tc+ta)r=min(r,r1);
ll r2=y*(cnt2-tb-ta)/(y-1);
ll tr2=cnt2-tb-ta+(r2/y-1);
if(tr2/y==r2/y-1)r2=min(r2,tr2);
r2=max(r2,y*(cnt1-tc));
if(cnt2>=tb+ta)r=min(r,r2);
ans+=r;
}
printf("%I64d\n",ans);
return 0;
}
CF 483B. Friends and Presents 数学 (二分) 难度:1的更多相关文章
- Codeforces 483B - Friends and Presents(二分+容斥)
483B - Friends and Presents 思路:这个博客写的不错:http://www.cnblogs.com/windysai/p/4058235.html 代码: #include& ...
- 快速切题CF 158B taxi 构造 && 82A double cola 数学观察 难度:0
实在太冷了今天 taxi :错误原因1 忽略了 1 1 1 1 和 1 2 1 这种情况,直接认为最多两组一车了 2 语句顺序错 double cola: 忘了减去n的序号1,即n-- B. Taxi ...
- CodeForces 483B Friends and Presents
Friends and Presents Time Limit:1000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I ...
- Codeforces483B. Friends and Presents(二分+容斥原理)
题目链接:传送门 题目: B. Friends and Presents time limit per test second memory limit per test megabytes inpu ...
- UVA 11881 Internal Rate of Return(数学+二分)
In finance, Internal Rate of Return (IRR) is the discount rate of an investment when NPV equals zero ...
- HDU 6216 A Cubic number and A Cubic Number(数学/二分查找)
题意: 给定一个素数p(p <= 1e12),问是否存在一对立方差等于p. 分析: 根据平方差公式: 因为p是一个素数, 所以只能拆分成 1*p, 所以 a-b = 1. 然后代入a = b + ...
- codeforces 483B Friends and Presents 解题报告
题目链接:http://codeforces.com/problemset/problem/483/B 题目意思:有两个 friends,需要将 cnt1 个不能整除 x 的数分给第一个friend, ...
- UVA 10668 - Expanding Rods(数学+二分)
UVA 10668 - Expanding Rods 题目链接 题意:给定一个铁棒,如图中加热会变成一段圆弧,长度为L′=(1+nc)l,问这时和原来位置的高度之差 思路:画一下图能够非常easy推出 ...
- CF 551E. GukiZ and GukiZiana [分块 二分]
GukiZ and GukiZiana 题意: 区间加 给出$y$查询$a_i=a_j=y$的$j-i$最大值 一开始以为和论文CC题一样...然后发现他带修改并且是给定了值 这样就更简单了.... ...
随机推荐
- 阿里云centos7.2 安装mysql 6.5
[root@111 ~]# uname -aLinux bxhs 3.10.0-327.22.2.el7.x86_64 #1 SMP Thu Jun 23 17:05:11 UTC 2016 x86_ ...
- flask实现api
https://www.cnblogs.com/vovlie/p/4178077.html from flask import Flask, jsonify app = Flask(__name__) ...
- Hook?
public interface IHook { /// <summary> /// 二维地图控件对象 /// </summary> ESRI.ArcGIS.Controls. ...
- Openstack(十一)部署网络服务neutron(控制节点)
11.1neutron服务介绍 neutron是openstack的网络组件,是OpenStack的网络服务,Openstack在2010年正式发布它的第一个版本Austin的时候,nova-netw ...
- Swagger生成的接口需要权限验证的处理方法
通常开发API的时候需要对接口进行权限验证,而我们在使用Swagger生成接口文档界面的时候,直接调用需要权限验证的接口会提示"当前用户没有登陆" 为了解决此问题,我们需要更改一下 ...
- 浅谈JS严格模式
浅谈JS严格模式 简介 何为严格模式?严格模式(strict mode)即在严格的条件下运行,在严格模式下,很多正常情况下不会报错的问题语句,将会报错并阻止运行. 但是,严格模式可以显著提高代码的健壮 ...
- Python3:sqlalchemy对mysql数据库操作,非sql语句
Python3:sqlalchemy对mysql数据库操作,非sql语句 # python3 # author lizm # datetime 2018-02-01 10:00:00 # -*- co ...
- Python3.x:sys.argv[]的简介
Python3.x:sys.argv[]的简介 sys模块通过sys.argv提供对任何命令行参数的访问.主要有两个参数变量: sys.argv是命令行参数的列表. len(sys.argv)是命令行 ...
- 【转】为什么我的DIV块前总有空隙?
在做网站项目时,博主爱吾所爱(爱生活=爱技术)很偶然地碰到一个奇怪的事情.我的DIV嵌套在另一个DIV里,总是出现这样一行空隙: Firebug查看内外两层DIV的margin, padding, l ...
- 为pyhon安装opencv扩展包出现distributed 1.21.8 requires msgpack, which is not installed.【转】
本文转载自:https://blog.csdn.net/weixin_39513374/article/details/81051466 pip install msgpack-python pip ...