CF 483B. Friends and Presents 数学 (二分) 难度:1
1 second
256 megabytes
standard input
standard output
You have two friends. You want to present each of them several positive integers. You want to present cnt1 numbers to the first friend and cnt2 numbers to the second friend. Moreover, you want all presented numbers to be distinct, that also means that no number should be presented to both friends.
In addition, the first friend does not like the numbers that are divisible without remainder by prime number x. The second one does not like the numbers that are divisible without remainder by prime number y. Of course, you're not going to present your friends numbers they don't like.
Your task is to find such minimum number v, that you can form presents using numbers from a set 1, 2, ..., v. Of course you may choose not to present some numbers at all.
A positive integer number greater than 1 is called prime if it has no positive divisors other than 1 and itself.
The only line contains four positive integers cnt1, cnt2, x, y (1 ≤ cnt1, cnt2 < 10^9; cnt1 + cnt2 ≤ 10^9; 2 ≤ x < y ≤ 3·10^4) — the numbers that are described in the statement. It is guaranteed that numbers x, y are prime.
Print a single integer — the answer to the problem.
3 1 2 3
5
1 3 2 3
4
#include<cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
ll x,y,cnt1,cnt2;
ll gcd(ll a,ll b){
if(b==0)return a;
return gcd(b,a%b);
}
ll pos(ll a){
if(a>=0)return a;
return 0;
}
int main(){
scanf("%I64d%I64d%I64d%I64d",&cnt1,&cnt2,&x,&y);
ll d=gcd(x,y);
ll lcm=x*y/d;
ll na=lcm-lcm/x-lcm/y+1;
ll nb=lcm/x-1;
ll nc=lcm/y-1;
ll sumn=na+nb+nc;
ll t=(cnt1+cnt2)/sumn;
t=max(t,cnt2/(na+nb));
t=max(t,cnt1/(na+nc));
ll ta=na*t;
ll tb=nb*t;
ll tc=nc*t;
ll ans=lcm*t;
if((pos(cnt2-tb)+pos(cnt1-tc))<=ta)ans--;
else {
ll r=0x7fffffff;
ll r0=pos(cnt2-tb)+pos(cnt1-tc)-ta;
if(r0>=0&&cnt2>=tb&&cnt1>=tc)r=min(r,r0); ll r1=x*(cnt1-tc-ta)/(x-1);
ll tr11=cnt1-tc-ta+(r1/x-1);
if(tr11/x==r1/x-1)r1=min(r1,tr11);
r1=max(r1,x*(cnt2-tb));
if(cnt1>=tc+ta)r=min(r,r1);
ll r2=y*(cnt2-tb-ta)/(y-1);
ll tr2=cnt2-tb-ta+(r2/y-1);
if(tr2/y==r2/y-1)r2=min(r2,tr2);
r2=max(r2,y*(cnt1-tc));
if(cnt2>=tb+ta)r=min(r,r2);
ans+=r;
}
printf("%I64d\n",ans);
return 0;
}
CF 483B. Friends and Presents 数学 (二分) 难度:1的更多相关文章
- Codeforces 483B - Friends and Presents(二分+容斥)
483B - Friends and Presents 思路:这个博客写的不错:http://www.cnblogs.com/windysai/p/4058235.html 代码: #include& ...
- 快速切题CF 158B taxi 构造 && 82A double cola 数学观察 难度:0
实在太冷了今天 taxi :错误原因1 忽略了 1 1 1 1 和 1 2 1 这种情况,直接认为最多两组一车了 2 语句顺序错 double cola: 忘了减去n的序号1,即n-- B. Taxi ...
- CodeForces 483B Friends and Presents
Friends and Presents Time Limit:1000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I ...
- Codeforces483B. Friends and Presents(二分+容斥原理)
题目链接:传送门 题目: B. Friends and Presents time limit per test second memory limit per test megabytes inpu ...
- UVA 11881 Internal Rate of Return(数学+二分)
In finance, Internal Rate of Return (IRR) is the discount rate of an investment when NPV equals zero ...
- HDU 6216 A Cubic number and A Cubic Number(数学/二分查找)
题意: 给定一个素数p(p <= 1e12),问是否存在一对立方差等于p. 分析: 根据平方差公式: 因为p是一个素数, 所以只能拆分成 1*p, 所以 a-b = 1. 然后代入a = b + ...
- codeforces 483B Friends and Presents 解题报告
题目链接:http://codeforces.com/problemset/problem/483/B 题目意思:有两个 friends,需要将 cnt1 个不能整除 x 的数分给第一个friend, ...
- UVA 10668 - Expanding Rods(数学+二分)
UVA 10668 - Expanding Rods 题目链接 题意:给定一个铁棒,如图中加热会变成一段圆弧,长度为L′=(1+nc)l,问这时和原来位置的高度之差 思路:画一下图能够非常easy推出 ...
- CF 551E. GukiZ and GukiZiana [分块 二分]
GukiZ and GukiZiana 题意: 区间加 给出$y$查询$a_i=a_j=y$的$j-i$最大值 一开始以为和论文CC题一样...然后发现他带修改并且是给定了值 这样就更简单了.... ...
随机推荐
- Network of Schools---poj1236(强连通分量)
题目链接 题意:学校有一些单向网络,现在需要传一些文件 求:1,求最少需要向几个学校分发文件才能让每个学校都收到, 2,需要添加几条网络才能从任意一个学校分发都可以传遍所有学校. 解题思路(参考大神的 ...
- HTTP返回码中301与302的区别(转)
add by zhj: 区别 1.使用效果不同 302跳转是暂时的跳转,搜索引擎会抓取新的内容而保留旧的网址.因为服务器返回302代码,搜索引擎认为新的网址只是暂时的. 301重定向是永久的重定向, ...
- Celery和Rabbitmq自学
异步消息队列,也能用于定时和周期性任务.每次修改的task代码还要重启worker,这个有点麻烦 所有带task()装饰器的可调用对象(usertask)都是celery.app.task.Task类 ...
- 三、Mosquitto Java 客户端实现
本文的实现是在 << 一.Mosquitto 介绍&安装>> << 二. Mosquitto 的使用说明 >> 两篇文章搭建好 Mosquitt ...
- POJ1175:Starry Night(bfs)
http://poj.org/problem?id=1175 题目解析: 这个题因为数据的原因可以很水的过,但我因为把1e-8写成了1e-9WA了N遍,一直WA,题目意思很简单就是相似图形(就是求旋转 ...
- sdut AOE网上的关键路径(spfa+前向星)
http://acm.sdut.edu.cn/sdutoj/showproblem.php?pid=2498&cid=1304 题目描述 一个无环的有向图称为无环图(Directed Acyc ...
- 1124 Raffle for Weibo Followers[简单]
1124 Raffle for Weibo Followers(20 分) John got a full mark on PAT. He was so happy that he decided t ...
- c#通过webrequest请求远程http服务时出现的问题
用WebRequest和WebClient,两种方式,请求一个由http服务发布的应用,结果出现异常. 有三种,1.System.Net.WebException: 服务器提交了协议冲突. Secti ...
- tp基础补充
ThinkPHP php框架 真实项目开发步骤: 多人同时开发项目,协作开发项目.分工合理.效率有提高(代码风格不一样.分工不好) 测试阶段 上线运行 对项目进行维护.修改.升级(单个人维护项目,十分 ...
- 2016 CCPC 长春 Solution
A - Hanzo vs. Genji 留坑. B - Fraction 水. #include <bits/stdc++.h> using namespace std; inline i ...