B. Friends and Presents
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

You have two friends. You want to present each of them several positive integers. You want to present cnt1 numbers to the first friend and cnt2 numbers to the second friend. Moreover, you want all presented numbers to be distinct, that also means that no number should be presented to both friends.

In addition, the first friend does not like the numbers that are divisible without remainder by prime number x. The second one does not like the numbers that are divisible without remainder by prime number y. Of course, you're not going to present your friends numbers they don't like.

Your task is to find such minimum number v, that you can form presents using numbers from a set 1, 2, ..., v. Of course you may choose not to present some numbers at all.

A positive integer number greater than 1 is called prime if it has no positive divisors other than 1 and itself.

Input

The only line contains four positive integers cnt1, cnt2, xy (1 ≤ cnt1, cnt2 < 10^9; cnt1 + cnt2 ≤ 10^9; 2 ≤ x < y ≤ 3·10^4) — the numbers that are described in the statement. It is guaranteed that numbers xy are prime.

Output

Print a single integer — the answer to the problem.

Sample test(s)
input
3 1 2 3
output
5
input
1 3 2 3
output
4
感想:其实直接二分就行了,但是我分类了好一会儿,直接算的
思路:
分成四种情况,1 不能被x,y整除(a) 2 不能被x整除(b) 3 不能被x整除(c) 4 同时能被x,y整除
那么就需要满足
a+b>=cnt2
a+c>=cnt1
a+b+c>=cnt1+cnt2
于是算来算去就算出来了,还是二分好用
 
#include<cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
ll x,y,cnt1,cnt2;
ll gcd(ll a,ll b){
if(b==0)return a;
return gcd(b,a%b);
}
ll pos(ll a){
if(a>=0)return a;
return 0;
}
int main(){
scanf("%I64d%I64d%I64d%I64d",&cnt1,&cnt2,&x,&y);
ll d=gcd(x,y);
ll lcm=x*y/d;
ll na=lcm-lcm/x-lcm/y+1;
ll nb=lcm/x-1;
ll nc=lcm/y-1;
ll sumn=na+nb+nc;
ll t=(cnt1+cnt2)/sumn;
t=max(t,cnt2/(na+nb));
t=max(t,cnt1/(na+nc));
ll ta=na*t;
ll tb=nb*t;
ll tc=nc*t;
ll ans=lcm*t;
if((pos(cnt2-tb)+pos(cnt1-tc))<=ta)ans--;
else {
ll r=0x7fffffff;
ll r0=pos(cnt2-tb)+pos(cnt1-tc)-ta;
if(r0>=0&&cnt2>=tb&&cnt1>=tc)r=min(r,r0); ll r1=x*(cnt1-tc-ta)/(x-1);
ll tr11=cnt1-tc-ta+(r1/x-1);
if(tr11/x==r1/x-1)r1=min(r1,tr11);
r1=max(r1,x*(cnt2-tb));
if(cnt1>=tc+ta)r=min(r,r1);
ll r2=y*(cnt2-tb-ta)/(y-1);
ll tr2=cnt2-tb-ta+(r2/y-1);
if(tr2/y==r2/y-1)r2=min(r2,tr2);
r2=max(r2,y*(cnt1-tc));
if(cnt2>=tb+ta)r=min(r,r2);
ans+=r;
}
printf("%I64d\n",ans);
return 0;
}

  

 

CF 483B. Friends and Presents 数学 (二分) 难度:1的更多相关文章

  1. Codeforces 483B - Friends and Presents(二分+容斥)

    483B - Friends and Presents 思路:这个博客写的不错:http://www.cnblogs.com/windysai/p/4058235.html 代码: #include& ...

  2. 快速切题CF 158B taxi 构造 && 82A double cola 数学观察 难度:0

    实在太冷了今天 taxi :错误原因1 忽略了 1 1 1 1 和 1 2 1 这种情况,直接认为最多两组一车了 2 语句顺序错 double cola: 忘了减去n的序号1,即n-- B. Taxi ...

  3. CodeForces 483B Friends and Presents

     Friends and Presents Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I ...

  4. Codeforces483B. Friends and Presents(二分+容斥原理)

    题目链接:传送门 题目: B. Friends and Presents time limit per test second memory limit per test megabytes inpu ...

  5. UVA 11881 Internal Rate of Return(数学+二分)

    In finance, Internal Rate of Return (IRR) is the discount rate of an investment when NPV equals zero ...

  6. HDU 6216 A Cubic number and A Cubic Number(数学/二分查找)

    题意: 给定一个素数p(p <= 1e12),问是否存在一对立方差等于p. 分析: 根据平方差公式: 因为p是一个素数, 所以只能拆分成 1*p, 所以 a-b = 1. 然后代入a = b + ...

  7. codeforces 483B Friends and Presents 解题报告

    题目链接:http://codeforces.com/problemset/problem/483/B 题目意思:有两个 friends,需要将 cnt1 个不能整除 x 的数分给第一个friend, ...

  8. UVA 10668 - Expanding Rods(数学+二分)

    UVA 10668 - Expanding Rods 题目链接 题意:给定一个铁棒,如图中加热会变成一段圆弧,长度为L′=(1+nc)l,问这时和原来位置的高度之差 思路:画一下图能够非常easy推出 ...

  9. CF 551E. GukiZ and GukiZiana [分块 二分]

    GukiZ and GukiZiana 题意: 区间加 给出$y$查询$a_i=a_j=y$的$j-i$最大值 一开始以为和论文CC题一样...然后发现他带修改并且是给定了值 这样就更简单了.... ...

随机推荐

  1. MySQL插入性能优化(转)

    原文:http://tech.uc.cn/?p=634 对于一些数据量较大的系统,数据库面临的问题除了查询效率低下,还有就是数据入库时间长.特别像报表系统,每天花费在数据导入上的时间可能会长达几个小时 ...

  2. 【spring mvc】application context中【bean】的生命周期

    生命周期过程 主要分为四部分: 一.实例化 1. 当调用者通过 getBean( name )向 容器寻找Bean 时,如果容器注册了org.springframework.beans.factory ...

  3. 一个Spark job的生命历程

    一个job的生命历程 dagScheduler.runJob //(1) --> submitJob ( eventProcessLoop.post(JobSubmitted,***) //(2 ...

  4. git相关使用技巧和问题

    本地有修改和提交,如何强制用远程的库更新更新.我尝试过用git pull -f,总是提示 You have not concluded your merge. (MERGE_HEAD exists). ...

  5. BackgroundWorker+ProgressBar+委托 实现多线程、进度条

    上文在<C# 使用BackgroundWorker实现WinForm异步>介绍了如何通过BackgroundWorker实现winForm异步通信,下面介绍如何通过BackgroundWo ...

  6. FlexPaper_1.2.1.swc——Flex在线显示PDF文档(使用FlexPaper)感悟

    http://www.cnblogs.com/wuhenke/archive/2010/03/16/1686885.html 想想自己先前搞PDF转SWF,然后在线浏览功能时,实在是费了不少精力.后来 ...

  7. fileupload上传文件时带参数

    var userID = ""; $('#picture').fileupload({ url: "http://localhost:35708/Handler/File ...

  8. 异常来自HRESULT:0x80070422

    今天同事使用一个用VB.NET2008开发的应用程序时提示“出现了下列应用程序错误:无法启动服务,原因可能是已被禁用或与其相关联的设备没有启动.(异常来自HRESULT:0x80070422)”   ...

  9. 前端学习笔记之CSS属性设置

    CSS属性设置   阅读目录 一 字体属性 二 文本属性 三 背景属性 四 盒子模型 五 盒子模型各部分详解 一 字体属性 1.font-weight:文字粗细 取值 描述 normal 默认值,标准 ...

  10. Apache HttpClient4使用教程

    基于HttpClient 4.5.2 执行GET请求 CloseableHttpClient httpClient = HttpClients.custom() .build(); Closeable ...