欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld

技术交流QQ群:433250724,欢迎对算法、技术、应用感兴趣的同学加入


双调排序是data-independent的排序, 即比较顺序与数据无关的排序方法, 特别适合做并行计算,例如用GPU、fpga来计算。

1、双调序列

在了解双调排序算法之前,我们先来看看什么是双调序列。 双调序列是一个先单调递增后单调递减(或者先单调递减后单调递增)的序列。

2、Batcher定理

将任意一个长为2n的双调序列A分为等长的两半X和Y,将X中的元素与Y中的元素一一按原序比较,即a[i]与a[i+n] (i < n)比较,将较大者放入MAX序列,较小者放入MIN序列。则得到的MAX和MIN序列仍然是双调序列,并且MAX序列中的任意一个元素不小于MIN序列中的任意一个元素[2]。

3、双调排序

假设我们有一个双调序列,则我们根据Batcher定理,将该序列划分成2个双调序列,然后继续对每个双调序列递归划分,得到更短的双调序列,直到得到的子序列长度为1为止。这时的输出序列按单调递增顺序排列。

见下图:升序排序,具体方法是,把一个序列(1…n)对半分,假设n=2^k,然后1和n/2+1比较,小的放上,接下来2和n/2+2比较,小的放上,以此类推;然后看成两个(n/2)长度的序列,因为他们都是双调序列,所以可以重复上面的过程;总共重复k轮,即最后一轮已经是长度是2的序列比较了,就可得到最终的排序结果。

双调排序示意图[1]:

4、任意序列生成双调序列

前面讲了一个双调序列如何排序,那么任意序列如何变成一个双调序列呢?

这个过程叫Bitonic merge, 实际上也是divide and conquer的思路。 和前面sort的思路正相反, 是一个bottom up的过程——将两个相邻的,单调性相反的单调序列看作一个双调序列, 每次将这两个相邻的,单调性相反的单调序列merge生成一个新的双调序列, 然后排序(同3、双调排序)。 这样只要每次两个相邻长度为n的序列的单调性相反, 就可以通过连接得到一个长度为2n的双调序列,然后对这个2n的序列进行一次双调排序变成有序,然后在把两个相邻的2n序列合并(在排序的时候第一个升序,第二个降序)。 n开始为1, 每次翻倍,直到等于数组长度, 最后就只需要再一遍单方向(单调性)排序了。

以16个元素的array为例,

1. 相邻两个元素合并形成8个单调性相反的单调序列,

2. 两两序列合并,形成4个双调序列,分别按相反单调性排序

3. 4个长度为4的相反单调性单调序列,相邻两个合并,生成两个长度为8的双调序列,分别排序

4. 2个长度为8的相反单调性单调序列,相邻两个合并,生成1个长度为16的双调序列,排序

示意图[1]:

详细Bitonic merge图(本图只画到生成一个16长的双调序列,最后排序没有画出):

最后再放一个8个元素排序的示意图[5]:

5、非2的幂次长度序列排序

这样的双调排序算法只能应付长度为2的幂的数组。那如何转化为能针对任意长度的数组呢?一个直观的方法就是使用padding。即使用一个定义的最大或者最小者来填充数组,让数组的大小填充到2的幂长度,再进行排序。最后过滤掉那些最大(最小)值即可。这种方式会使用到额外的空间,而且有时候padding的空间比较大(如数组长度为1025个元素,则需要填充到2048个,浪费了大量空间)。但是这种方法比较容易转化为针对GPU的并行算法。所以一般来说,并行计算中常使用双调排序来对一些较小的数组进行排序[3]。 如果要考虑不用padding,用更复杂的处理方法,参考[4] n!=2^k的双调排序网络,本文略。

参考资料

[1] CUDA(六). 从并行排序方法理解并行化思维——冒泡、归并、双调排序的GPU实现, http://blog.csdn.net/abcjennifer/article/details/47110991

[2] 并行计算】Bitonic Sort(双调排序)基础, http://blog.csdn.net/jiange_zh/article/details/49533477

[3] 双调排序:从串行到并行,以及OpenCL上的实现, http://blog.csdn.net/bryanlai0720/article/details/45094675

[4] n!=2^k的双调排序网络, http://blog.csdn.net/ljiabin/article/details/8630627

[5] 分段双调排序实现, http://blog.csdn.net/u014226072/article/details/56840243

三十分钟理解:双调排序Bitonic Sort,适合并行计算的排序算法的更多相关文章

  1. [转载]三十分钟理解:线性插值,双线性插值Bilinear Interpolation算法

    [转载]三十分钟理解:线性插值,双线性插值Bilinear Interpolation算法 来源:https://blog.csdn.net/xbinworld/article/details/656 ...

  2. 简单选择排序 Selection Sort 和树形选择排序 Tree Selection Sort

    选择排序 Selection Sort 选择排序的基本思想是:每一趟在剩余未排序的若干记录中选取关键字最小的(也可以是最大的,本文中均考虑排升序)记录作为有序序列中下一个记录. 如第i趟选择排序就是在 ...

  3. 【转载】双调排序Bitonic Sort,适合并行计算的排序算法

    双调排序是data-independent的排序, 即比较顺序与数据无关的排序方法, 特别适合做并行计算,例如用GPU.fpga来计算. 1.双调序列 在了解双调排序算法之前,我们先来看看什么是双调序 ...

  4. 三十分钟理解博弈论“纳什均衡” -- Nash Equilibrium

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 纳什均衡(或者纳什平衡),Nash ...

  5. 三十分钟理解:线性插值,双线性插值Bilinear Interpolation算法

    线性插值 先讲一下线性插值:已知数据 (x0, y0) 与 (x1, y1),要计算 [x0, x1] 区间内某一位置 x 在直线上的y值(反过来也是一样,略): y−y0x−x0=y1−y0x1−x ...

  6. [重磅]Deep Forest,非神经网络的深度模型,周志华老师最新之作,三十分钟理解!

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 深度学习最大的贡献,个人认为就是表征 ...

  7. 三十分钟理解计算图上的微积分:Backpropagation,反向微分

    神经网络的训练算法,目前基本上是以Backpropagation (BP) 反向传播为主(加上一些变化),NN的训练是在1986年被提出,但实际上,BP 已经在不同领域中被重复发明了数十次了(参见 G ...

  8. python 字典排序 关于sort()、reversed()、sorted()

    一.Python的排序 1.reversed() 这个很好理解,reversed英文意思就是:adj. 颠倒的:相反的:(判决等)撤销的 print list(reversed(['dream','a ...

  9. <转>python字典排序 关于sort()、reversed()、sorted()

    一.Python的排序 1.reversed() 这个很好理解,reversed英文意思就是:adj. 颠倒的:相反的:(判决等)撤销的 print list(reversed(['dream','a ...

随机推荐

  1. Callable 和Runnable

    1:Callable ,方法调用会有返回值. private void callableTest throws ExecutionException, InterruptedException { E ...

  2. Spark的RDD原理以及2.0特性的介绍

    转载自:http://www.tuicool.com/articles/7VNfyif 王联辉,曾在腾讯,Intel 等公司从事大数据相关的工作.2013 年 - 2016 年先后负责腾讯 Yarn ...

  3. 模块讲解----subprocess模块

    历史 #输出结果到屏幕上,并不返回执行状态os.system('dir')#保存命令的执行结果输出ret = os.popen('dir').read() 问题:上面2条是把命令结果保存下来了,但是返 ...

  4. C++ vector错误(1)

    在用C++的vector的时候,要保证访问的下标不能超过vector的size.否则出现msvcp60.dll 访问禁止.

  5. 解决不能在本地使用JQuery load的方法

    $.ajaxSetup({ xhr: function () { if ("ActiveXObject" in window) { return new ActiveXObject ...

  6. [ 翻译]ruby rails相关的常见服务器

    原文:http://stackoverflow.com/questions/4113299/ruby-on-rails-server-options     一,Apache vs Nginx     ...

  7. 77. Combinations(回溯)

    Given two integers n and k, return all possible combinations of k numbers out of 1 ... n. Example: I ...

  8. Python3:Requests模块的异常值处理

    Python3:Requests模块的异常值处理 用Python的requests模块进行爬虫时,一个简单高效的模块就是requests模块,利用get()或者post()函数,发送请求. 但是在真正 ...

  9. MySQL "Zero date value prohibited" 问题解析

    问题起因 之前一直使用Oracle数据,对MySQL数据库使用不多,因此搞不懂MySQL的日期“0000-00-00 00:00:00”对程序会产生怎样的影响.费了我一下午的时间 -_-^^. 首先: ...

  10. linux各版本基线检查脚本(centos6、centos7、ubuntu系列)

    以下是centos7基线检查脚本: #!/bin/bash #version v1. by pensar #操作系统linux 配置规范--centos7 cat <<EOF ****** ...