Scout YYF I
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 10214   Accepted: 2980

Description

YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's base. After overcoming a series difficulties, YYF is now at the start of enemy's famous "mine road". This is a very long road, on which there are numbers of mines. At first, YYF is at step one. For each step after that, YYF will walk one step with a probability of p, or jump two step with a probality of 1-p. Here is the task, given the place of each mine, please calculate the probality that YYF can go through the "mine road" safely.

Input

The input contains many test cases ended with EOF.
Each test case contains two lines.
The First line of each test case is N (1 ≤ N ≤ 10) and p (0.25 ≤ p ≤ 0.75) seperated by a single blank, standing for the number of mines and the probability to walk one step.
The Second line of each test case is N integer standing for the place of N mines. Each integer is in the range of [1, 100000000].

Output

For each test case, output the probabilty in a single line with the precision to 7 digits after the decimal point.

Sample Input

1 0.5
2
2 0.5
2 4

Sample Output

0.5000000
0.2500000

Source

    起始点在1,总共有n枚炸弹,位置位于x[i],(1<=x[i]<=1e8),每次有P的概率走一步,(1-P)的概率走两步,问安全走过所有炸弹的概率。
设f[i]表示安全到i点的概率,那么答案就是f[ max{x[i]} +1 ] ,因为每次只能走1/2,要想走过一个炸弹xi,只能在xi-1处走两步来实现(最后一次走)。
有f[i]=f[i-1]*P+f[i-2]*(1-P) ,但是N很大会超时。想到用矩阵优化,但是中间有炸弹的地方就不好处理了。对这个道路进行划分,根据炸弹的位置分为
[1,x[1]] , [x[1]+1,x[2]]......[x[n-1]+1,x[n]] ; 分成了N段,假设成功通过第i段的概率是Pi,那么答案就是∏Pi ,Pi就等价于从x[i-1]+1走到x[i]+1且最后一步走的大小是2
的概率,由于中间过程没有炸弹所以可以矩阵幂来算。
(f(n),f(n-1)) = (f(n-1),f(n-2)) * ((P,1),(1-P,0))
  注意判断特殊情况,两个炸弹相邻或者起点是炸弹那么输出0.0000000即可。
  

 #include<iostream>
#include<cstring>
#include<queue>
#include<cstdio>
#include<stack>
#include<set>
#include<map>
#include<cmath>
#include<ctime>
#include<time.h>
#include<algorithm>
using namespace std;
#define mp make_pair
#define pb push_back
#define debug puts("debug")
#define LL long long
#define pii pair<int,int>
#define eps 1e-12 struct matrix{
double a[][];
matrix& operator*(matrix &tmp){
matrix ans;
memset(ans.a,,sizeof(ans.a));
for(int i=;i<;++i){
for(int j=;j<;++j){
for(int k=;k<;++k){
ans.a[i][j]+=a[i][k]*tmp.a[k][j];
}
}
}
return ans;
}
}A,E;
double qpow(matrix H,int b){
matrix ans=E;
while(b){
if(b&) ans=ans*H;
H=H*H;
b>>=;
}
return ans.a[][];
}
int main()
{
int n,m,i,j,k,t;
int x[];
double P;
E.a[][]=E.a[][]=;
E.a[][]=E.a[][]=;
while(scanf("%d%lf",&n,&P)!=EOF){
A.a[][]=P;
A.a[][]=1.00-P;
A.a[][]=;
A.a[][]=;
for(i=;i<=n;++i) scanf("%d",x+i);
sort(x+,x++n);
bool ok=;
for(i=;i<=n;++i)
if(x[i]-x[i-]==) ok=;
if(ok==||x[]==){
printf("%.7f\n",0.0);
continue;
}
double ans=;
ans=ans*(-P)*qpow(A,x[]-);
for(i=;i<=n;++i){
if(x[i]==x[i-]) continue;
ans=ans*((double)-P)*qpow(A,x[i]-x[i-]-);
}
printf("%.7f\n",ans);
}
return ;
}
 

POJ-3744-概率dp+矩阵幂(分段)的更多相关文章

  1. Scout YYF I POJ - 3744(概率dp + 矩阵快速幂)

    题意: 一条路上有n个地雷,你从1开始走,单位时间内有p的概率走一步,1-p的概率走两步,问安全通过这条路的概率 解析: 很容易想到 dp[i] = p * dp[i-1] + (1 - p) * d ...

  2. poj 3744 概率dp+矩阵快速幂

    题意:在一条布满地雷的路上,你现在的起点在1处.在N个点处布有地雷,1<=N<=10.地雷点的坐标范围:[1,100000000]. 每次前进p的概率前进一步,1-p的概率前进1-p步.问 ...

  3. poj 3744 概率dp 快速幂 注意排序 难度:2

    /* Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5304   Accepted: 1455 De ...

  4. POJ3744 Scout YYF I 概率DP+矩阵快速幂

    http://poj.org/problem?id=3744 题意:一条路,起点为1,有概率p走一步,概率1-p跳过一格(不走中间格的走两步),有n个点不能走,问到达终点(即最后一个坏点后)不踩坏点的 ...

  5. hdu 4576(简单概率dp | 矩阵优化)

    艰难的一道题,体现出菜菜的我... 首先,先吐槽下. 这题到底出题人是怎么想的,用普通概率dp水过??? 那为什么我概率dp写的稍微烂点就一直tle?  感觉很不公平.大家算法都一致,因为我程序没有那 ...

  6. [Poj3744]Scout YYF I (概率dp + 矩阵乘法)

    Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9552   Accepted: 2793 Descr ...

  7. BZOJ1444[Jsoi2009]有趣的游戏——AC自动机+概率DP+矩阵乘法

    题目描述 输入 注意 是0<=P, n , l, m≤ 10. 输出 样例输入 input 1 3 2 2 1 2 1 2 AB BA AA input 2 3 4 2 1 2 1 2 AABA ...

  8. bzoj-4870-组合dp+矩阵幂

    4870: [Shoi2017]组合数问题 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 829  Solved: 446[Submit][Statu ...

  9. 【BZOJ1444】[Jsoi2009]有趣的游戏 AC自动机+概率DP+矩阵乘法

    [BZOJ1444][Jsoi2009]有趣的游戏 Description Input 注意 是0<=P Output Sample Input Sample Output HINT  30%的 ...

随机推荐

  1. .NET截取指定长度字符超出部分以"..."代替

    /// <summary> /// 将指定字符串按指定长度进行剪切, /// </summary> /// <param name= "Str "&g ...

  2. java网络编程面试题

    1.网络编程时的同步.异步.阻塞.非阻塞? 同步:函数调用在没得到结果之前,没有调用结果,不返回任何结果.异步:函数调用在没得到结果之前,没有调用结果,返回状态信息.阻塞:函数调用在没得到结果之前,当 ...

  3. Python开发【Django】:中间件、CSRF

    CSRF 1.概述 CSRF(Cross Site Request Forgery)跨站点伪造请求,举例来讲,某个恶意的网站上有一个指向你的网站的链接,如果某个用户已经登录到你的网站上了,那么当这个用 ...

  4. 【剑指Offer】俯视50题之1-10题

    面试题1赋值运算符函数  面试题2 实现Singleton模式  面试题3 二维数组中的查找   面试题4 替换空格   面试题5 从头到尾打印链表   面试题6 重建二叉树   面试题7 用两个栈实 ...

  5. [py][lc]python的纸牌知识点

    模块collections-collections.namedtuple表示tuple 如表示一个坐标, t = (1,2), 搞不清楚. 如果这样就对了Point(x=1, y=2) from co ...

  6. Centos7使用yum下载rpm包而不执行安装

    yum-downloadonly是yum的一个插件,使得yum可以从RHN或者yum的仓库只下载包而不安装. 举例,从yum源下载ricci软件包 # yum install --downloadon ...

  7. Spring整合Mybatis 之分页插件使用

    [分页插件项目中的正式代码一共有个5个Java文件,这5个文件的说明如下] Page<E>[必须]:分页参数类,该类继承ArrayList,虽然分页查询返回的结果实际类型是Page< ...

  8. Codeforces Round #520 (Div. 2) Solution

    A. A Prank Solved. 题意: 给出一串数字,每个数字的范围是$[1, 1000]$,并且这个序列是递增的,求最多擦除掉多少个数字,使得别人一看就知道缺的数字是什么. 思路: 显然,如果 ...

  9. ZW团队:IN_OUT传播模型简介

    传统媒体,网络媒体的整合推广,我曾经提出过一个:Tn-Out模式 In-Out是NBA的篮球术语,你自己百度下 传统媒体承担"IN"的角色,负责传播的深度和建立公信力 网络媒体充当 ...

  10. 在Qt中如何编写插件,加载插件和卸载插件(转)

    Qt提供了一个类QPluginLoader来加载静态库和动态库,在Qt中,Qt把动态库和静态库都看成是一个插件,使用QPluginLoader来加载和卸载这些库.由于在开发项目的过程中,要开发一套插件 ...