POJ-3744-概率dp+矩阵幂(分段)
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 10214 | Accepted: 2980 |
Description
Input
Each test case contains two lines.
The First line of each test case is N (1 ≤ N ≤ 10) and p (0.25 ≤ p ≤ 0.75) seperated by a single blank, standing for the number of mines and the probability to walk one step.
The Second line of each test case is N integer standing for the place of N mines. Each integer is in the range of [1, 100000000].
Output
Sample Input
1 0.5
2
2 0.5
2 4
Sample Output
0.5000000
0.2500000
Source
#include<iostream>
#include<cstring>
#include<queue>
#include<cstdio>
#include<stack>
#include<set>
#include<map>
#include<cmath>
#include<ctime>
#include<time.h>
#include<algorithm>
using namespace std;
#define mp make_pair
#define pb push_back
#define debug puts("debug")
#define LL long long
#define pii pair<int,int>
#define eps 1e-12 struct matrix{
double a[][];
matrix& operator*(matrix &tmp){
matrix ans;
memset(ans.a,,sizeof(ans.a));
for(int i=;i<;++i){
for(int j=;j<;++j){
for(int k=;k<;++k){
ans.a[i][j]+=a[i][k]*tmp.a[k][j];
}
}
}
return ans;
}
}A,E;
double qpow(matrix H,int b){
matrix ans=E;
while(b){
if(b&) ans=ans*H;
H=H*H;
b>>=;
}
return ans.a[][];
}
int main()
{
int n,m,i,j,k,t;
int x[];
double P;
E.a[][]=E.a[][]=;
E.a[][]=E.a[][]=;
while(scanf("%d%lf",&n,&P)!=EOF){
A.a[][]=P;
A.a[][]=1.00-P;
A.a[][]=;
A.a[][]=;
for(i=;i<=n;++i) scanf("%d",x+i);
sort(x+,x++n);
bool ok=;
for(i=;i<=n;++i)
if(x[i]-x[i-]==) ok=;
if(ok==||x[]==){
printf("%.7f\n",0.0);
continue;
}
double ans=;
ans=ans*(-P)*qpow(A,x[]-);
for(i=;i<=n;++i){
if(x[i]==x[i-]) continue;
ans=ans*((double)-P)*qpow(A,x[i]-x[i-]-);
}
printf("%.7f\n",ans);
}
return ;
}
POJ-3744-概率dp+矩阵幂(分段)的更多相关文章
- Scout YYF I POJ - 3744(概率dp + 矩阵快速幂)
题意: 一条路上有n个地雷,你从1开始走,单位时间内有p的概率走一步,1-p的概率走两步,问安全通过这条路的概率 解析: 很容易想到 dp[i] = p * dp[i-1] + (1 - p) * d ...
- poj 3744 概率dp+矩阵快速幂
题意:在一条布满地雷的路上,你现在的起点在1处.在N个点处布有地雷,1<=N<=10.地雷点的坐标范围:[1,100000000]. 每次前进p的概率前进一步,1-p的概率前进1-p步.问 ...
- poj 3744 概率dp 快速幂 注意排序 难度:2
/* Scout YYF I Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5304 Accepted: 1455 De ...
- POJ3744 Scout YYF I 概率DP+矩阵快速幂
http://poj.org/problem?id=3744 题意:一条路,起点为1,有概率p走一步,概率1-p跳过一格(不走中间格的走两步),有n个点不能走,问到达终点(即最后一个坏点后)不踩坏点的 ...
- hdu 4576(简单概率dp | 矩阵优化)
艰难的一道题,体现出菜菜的我... 首先,先吐槽下. 这题到底出题人是怎么想的,用普通概率dp水过??? 那为什么我概率dp写的稍微烂点就一直tle? 感觉很不公平.大家算法都一致,因为我程序没有那 ...
- [Poj3744]Scout YYF I (概率dp + 矩阵乘法)
Scout YYF I Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9552 Accepted: 2793 Descr ...
- BZOJ1444[Jsoi2009]有趣的游戏——AC自动机+概率DP+矩阵乘法
题目描述 输入 注意 是0<=P, n , l, m≤ 10. 输出 样例输入 input 1 3 2 2 1 2 1 2 AB BA AA input 2 3 4 2 1 2 1 2 AABA ...
- bzoj-4870-组合dp+矩阵幂
4870: [Shoi2017]组合数问题 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 829 Solved: 446[Submit][Statu ...
- 【BZOJ1444】[Jsoi2009]有趣的游戏 AC自动机+概率DP+矩阵乘法
[BZOJ1444][Jsoi2009]有趣的游戏 Description Input 注意 是0<=P Output Sample Input Sample Output HINT 30%的 ...
随机推荐
- .NET截取指定长度字符超出部分以"..."代替
/// <summary> /// 将指定字符串按指定长度进行剪切, /// </summary> /// <param name= "Str "&g ...
- java网络编程面试题
1.网络编程时的同步.异步.阻塞.非阻塞? 同步:函数调用在没得到结果之前,没有调用结果,不返回任何结果.异步:函数调用在没得到结果之前,没有调用结果,返回状态信息.阻塞:函数调用在没得到结果之前,当 ...
- Python开发【Django】:中间件、CSRF
CSRF 1.概述 CSRF(Cross Site Request Forgery)跨站点伪造请求,举例来讲,某个恶意的网站上有一个指向你的网站的链接,如果某个用户已经登录到你的网站上了,那么当这个用 ...
- 【剑指Offer】俯视50题之1-10题
面试题1赋值运算符函数 面试题2 实现Singleton模式 面试题3 二维数组中的查找 面试题4 替换空格 面试题5 从头到尾打印链表 面试题6 重建二叉树 面试题7 用两个栈实 ...
- [py][lc]python的纸牌知识点
模块collections-collections.namedtuple表示tuple 如表示一个坐标, t = (1,2), 搞不清楚. 如果这样就对了Point(x=1, y=2) from co ...
- Centos7使用yum下载rpm包而不执行安装
yum-downloadonly是yum的一个插件,使得yum可以从RHN或者yum的仓库只下载包而不安装. 举例,从yum源下载ricci软件包 # yum install --downloadon ...
- Spring整合Mybatis 之分页插件使用
[分页插件项目中的正式代码一共有个5个Java文件,这5个文件的说明如下] Page<E>[必须]:分页参数类,该类继承ArrayList,虽然分页查询返回的结果实际类型是Page< ...
- Codeforces Round #520 (Div. 2) Solution
A. A Prank Solved. 题意: 给出一串数字,每个数字的范围是$[1, 1000]$,并且这个序列是递增的,求最多擦除掉多少个数字,使得别人一看就知道缺的数字是什么. 思路: 显然,如果 ...
- ZW团队:IN_OUT传播模型简介
传统媒体,网络媒体的整合推广,我曾经提出过一个:Tn-Out模式 In-Out是NBA的篮球术语,你自己百度下 传统媒体承担"IN"的角色,负责传播的深度和建立公信力 网络媒体充当 ...
- 在Qt中如何编写插件,加载插件和卸载插件(转)
Qt提供了一个类QPluginLoader来加载静态库和动态库,在Qt中,Qt把动态库和静态库都看成是一个插件,使用QPluginLoader来加载和卸载这些库.由于在开发项目的过程中,要开发一套插件 ...