Scout YYF I
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 10214   Accepted: 2980

Description

YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's base. After overcoming a series difficulties, YYF is now at the start of enemy's famous "mine road". This is a very long road, on which there are numbers of mines. At first, YYF is at step one. For each step after that, YYF will walk one step with a probability of p, or jump two step with a probality of 1-p. Here is the task, given the place of each mine, please calculate the probality that YYF can go through the "mine road" safely.

Input

The input contains many test cases ended with EOF.
Each test case contains two lines.
The First line of each test case is N (1 ≤ N ≤ 10) and p (0.25 ≤ p ≤ 0.75) seperated by a single blank, standing for the number of mines and the probability to walk one step.
The Second line of each test case is N integer standing for the place of N mines. Each integer is in the range of [1, 100000000].

Output

For each test case, output the probabilty in a single line with the precision to 7 digits after the decimal point.

Sample Input

1 0.5
2
2 0.5
2 4

Sample Output

0.5000000
0.2500000

Source

    起始点在1,总共有n枚炸弹,位置位于x[i],(1<=x[i]<=1e8),每次有P的概率走一步,(1-P)的概率走两步,问安全走过所有炸弹的概率。
设f[i]表示安全到i点的概率,那么答案就是f[ max{x[i]} +1 ] ,因为每次只能走1/2,要想走过一个炸弹xi,只能在xi-1处走两步来实现(最后一次走)。
有f[i]=f[i-1]*P+f[i-2]*(1-P) ,但是N很大会超时。想到用矩阵优化,但是中间有炸弹的地方就不好处理了。对这个道路进行划分,根据炸弹的位置分为
[1,x[1]] , [x[1]+1,x[2]]......[x[n-1]+1,x[n]] ; 分成了N段,假设成功通过第i段的概率是Pi,那么答案就是∏Pi ,Pi就等价于从x[i-1]+1走到x[i]+1且最后一步走的大小是2
的概率,由于中间过程没有炸弹所以可以矩阵幂来算。
(f(n),f(n-1)) = (f(n-1),f(n-2)) * ((P,1),(1-P,0))
  注意判断特殊情况,两个炸弹相邻或者起点是炸弹那么输出0.0000000即可。
  

 #include<iostream>
#include<cstring>
#include<queue>
#include<cstdio>
#include<stack>
#include<set>
#include<map>
#include<cmath>
#include<ctime>
#include<time.h>
#include<algorithm>
using namespace std;
#define mp make_pair
#define pb push_back
#define debug puts("debug")
#define LL long long
#define pii pair<int,int>
#define eps 1e-12 struct matrix{
double a[][];
matrix& operator*(matrix &tmp){
matrix ans;
memset(ans.a,,sizeof(ans.a));
for(int i=;i<;++i){
for(int j=;j<;++j){
for(int k=;k<;++k){
ans.a[i][j]+=a[i][k]*tmp.a[k][j];
}
}
}
return ans;
}
}A,E;
double qpow(matrix H,int b){
matrix ans=E;
while(b){
if(b&) ans=ans*H;
H=H*H;
b>>=;
}
return ans.a[][];
}
int main()
{
int n,m,i,j,k,t;
int x[];
double P;
E.a[][]=E.a[][]=;
E.a[][]=E.a[][]=;
while(scanf("%d%lf",&n,&P)!=EOF){
A.a[][]=P;
A.a[][]=1.00-P;
A.a[][]=;
A.a[][]=;
for(i=;i<=n;++i) scanf("%d",x+i);
sort(x+,x++n);
bool ok=;
for(i=;i<=n;++i)
if(x[i]-x[i-]==) ok=;
if(ok==||x[]==){
printf("%.7f\n",0.0);
continue;
}
double ans=;
ans=ans*(-P)*qpow(A,x[]-);
for(i=;i<=n;++i){
if(x[i]==x[i-]) continue;
ans=ans*((double)-P)*qpow(A,x[i]-x[i-]-);
}
printf("%.7f\n",ans);
}
return ;
}
 

POJ-3744-概率dp+矩阵幂(分段)的更多相关文章

  1. Scout YYF I POJ - 3744(概率dp + 矩阵快速幂)

    题意: 一条路上有n个地雷,你从1开始走,单位时间内有p的概率走一步,1-p的概率走两步,问安全通过这条路的概率 解析: 很容易想到 dp[i] = p * dp[i-1] + (1 - p) * d ...

  2. poj 3744 概率dp+矩阵快速幂

    题意:在一条布满地雷的路上,你现在的起点在1处.在N个点处布有地雷,1<=N<=10.地雷点的坐标范围:[1,100000000]. 每次前进p的概率前进一步,1-p的概率前进1-p步.问 ...

  3. poj 3744 概率dp 快速幂 注意排序 难度:2

    /* Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5304   Accepted: 1455 De ...

  4. POJ3744 Scout YYF I 概率DP+矩阵快速幂

    http://poj.org/problem?id=3744 题意:一条路,起点为1,有概率p走一步,概率1-p跳过一格(不走中间格的走两步),有n个点不能走,问到达终点(即最后一个坏点后)不踩坏点的 ...

  5. hdu 4576(简单概率dp | 矩阵优化)

    艰难的一道题,体现出菜菜的我... 首先,先吐槽下. 这题到底出题人是怎么想的,用普通概率dp水过??? 那为什么我概率dp写的稍微烂点就一直tle?  感觉很不公平.大家算法都一致,因为我程序没有那 ...

  6. [Poj3744]Scout YYF I (概率dp + 矩阵乘法)

    Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9552   Accepted: 2793 Descr ...

  7. BZOJ1444[Jsoi2009]有趣的游戏——AC自动机+概率DP+矩阵乘法

    题目描述 输入 注意 是0<=P, n , l, m≤ 10. 输出 样例输入 input 1 3 2 2 1 2 1 2 AB BA AA input 2 3 4 2 1 2 1 2 AABA ...

  8. bzoj-4870-组合dp+矩阵幂

    4870: [Shoi2017]组合数问题 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 829  Solved: 446[Submit][Statu ...

  9. 【BZOJ1444】[Jsoi2009]有趣的游戏 AC自动机+概率DP+矩阵乘法

    [BZOJ1444][Jsoi2009]有趣的游戏 Description Input 注意 是0<=P Output Sample Input Sample Output HINT  30%的 ...

随机推荐

  1. 关于string的length

    在C++里面,std::string的length()返回的是字节数,与编码方式有关. int main() { std::string s = "我是中国人"; std::cou ...

  2. Process Monitor分析某个应用行为

    1.打开Process Mointor 2.点击filter-->filter   在弹出的对话框中Architecture 下拉框,选择Process Name 填写要分析的应用程序名字. 点 ...

  3. LoadRunner-常用的函数

    LoadRunner中,常用的函数有很多,这里只介绍编写性能测试脚本过程中那些必然用到的函数.本文重点关注这些典型函数的应用场合及注意点,至于函数详细使用说明请参见LoadRunner帮助文档. 1. ...

  4. uva 11105 - Semi-prime H-numbers(数论)

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/u011328934/article/details/36644069 option=com_onli ...

  5. Atom预览markdown插件Markdown Preview Enhanced

    atom 上目前最强的 markdown 插件Markdown Preview Enhanced 是一款为 ATOM 编辑器编写的超级强大的 Markdown 插件.这款插件意在让你拥有飘逸的 Mar ...

  6. Linux下编译安装PHP扩展memcached

    [安装 libevent] $ tar zxvf libevent-2.0.20-stable.tar.gz $ cd libevent-2.0.20-stable/$ ./configure --p ...

  7. Yarn框架和工作流程研究

    一.概述     将公司集群升级到Yarn已经有一段时间,自己也对Yarn也研究了一段时间,现在开始记录一下自己在研究Yarn过程中的一些笔记.这篇blog主要主要从大体上说说Yarn的基本架构以及其 ...

  8. C++ Builder创建和调用dll中的资源

    程序开发中经常会用到一些图标.图片.光标.声音等,我们称它们为资源(Resource).当多个窗口用到同样的资源时,可以将这些公共的资源放到一个dll文件里调用,这样,由于定位资源比在磁盘中定位文件花 ...

  9. SQL语句中case函数

    case函数,严格的意义上来讲case函数已经试流程控制语句了,不是简单意义上的函数,不过为了方便,很多人将case函数称为流程控制函数. case函数的一般有两种用法:1.case expressi ...

  10. (转)在 ListViewItem 上拖动进行框选

    public partial class Form1 : Form { private bool IsMouseDown = false; Rectangle MouseRect = Rectangl ...