【LG3973】[TJOI2015]线性代数
【LG3973】[TJOI2015]线性代数
题面
题解
正常解法
一大堆矩阵乘在一起很丑对吧
化一下柿子:
\Leftrightarrow D=\sum_{i=1}^n(\sum_{j=1}^na_j*b_{j,i}-c_i)*a_i\\
\Leftrightarrow D=\sum_{i=1}^n\sum_{j=1}^na_i*a_j*b_{i,j}-\sum_{i=1}^na_i*c_i
\]
分析一下我们选或不选某个数的贡献:
因为\(\forall a_i\in{0,1}\),所以我们可以将贡献算出
如果同时选\(i,j\),则获得\(b_{i,j}+b_{j,i}\)的贡献
如果不选\(i\),则减去\(c_i\)的贡献
这就是一个最大权闭合子图:
连边时,\(S\)连代表\((i,j)\)的点,容量\(b_{i,j}+b_{j,i}\),
代表\(i\)的点连\(T\),容量\(c_i\)
而如果选\((i,j)\)必选\(i\)、\(j\)再连
(i,j)\rightarrow j(cap=\infty)
\]
然后总和-最小割即可
然而因为下面的方法,我没有用最大流
奇怪的\(AC\)
\(\sum_{i=1}^n\sum_{j=1}^nb_{i,j}-\sum_{i=1}^n c_i\)
八行主程序:
int main () {
N = gi(); int ans = 0;
for (int i = 1; i <= N; i++)
for (int j = 1; j <= N; j++) ans += gi();
for (int i = 1; i <= N; i++) ans -= gi();
printf("%d\n", ans);
return 0;
}
【LG3973】[TJOI2015]线性代数的更多相关文章
- bzoj 3996: [TJOI2015]线性代数 [最小割]
3996: [TJOI2015]线性代数 题意:给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 \(D=(A * B-C)* A^T\)最大.其中A^T为A的转置.输出D.每 ...
- BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图
BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大. ...
- 【BZOJ3996】[TJOI2015]线性代数(最小割)
[BZOJ3996][TJOI2015]线性代数(最小割) 题面 BZOJ 洛谷 题解 首先把式子拆开,发现我们的答案式就是这个: \[\sum_{i=1}^n\sum_{j=1}^n B_{i,j} ...
- 【BZOJ 3996】 3996: [TJOI2015]线性代数 (最小割)
3996: [TJOI2015]线性代数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1368 Solved: 832 Description 给 ...
- [Luogu 3973] TJOI2015 线性代数
[Luogu 3973] TJOI2015 线性代数 这竟然是一道最小割模型. 据说是最大权闭合子图. 先把矩阵式子推出来. 然后,套路建模就好. #include <algorithm> ...
- 【BZOJ3996】[TJOI2015]线性代数 最大权闭合图
[BZOJ3996][TJOI2015]线性代数 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的 ...
- [TJOI2015]线性代数(网络流)
[TJOI2015]线性代数(最大权闭合子图,网络流) 为了提高智商,ZJY开始学习线性代数.她的小伙伴菠萝给她出了这样一个问题:给定一个n*n的矩阵B和一个1×n的矩阵C.求出一个1×n的01矩阵A ...
- 洛谷P3973 - [TJOI2015]线性代数
Portal Description 给定一个\(n\times n\)的矩阵\(B\)和一个\(1×n\)的矩阵\(C\).求出一个\(1×n\)的01矩阵\(A\),使得\(D=(A×B-C)×A ...
- 【BZOJ】3996: [TJOI2015]线性代数
题意 给出一个\(N \times N\)的矩阵\(B\)和一个\(1 \times N\)的矩阵\(C\).求出一个\(1 \times N\)的01矩阵\(A\),使得\[ D = ( A * B ...
随机推荐
- BZOJ 2440 完全平方数 莫比乌斯反演模板题
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2440 题目大意: 求第k个无平方因子的数 思路: 二分答案x,求1-x中有多少个平方因 ...
- SGU---462 Electrician 最大生成树
题目链接: https://cn.vjudge.net/problem/SGU-462 题目大意: 有N条电线需要接入电网,第i条电线计划连接ai和bi两个地点,电线有两个属性:ri(电线稳定度)和c ...
- Django template for 循环用法
当列表为空或者非空时执行不同操作: {% for item in list %} ... {% empty %} ... {% endfor %} 使用forloop.counter访问循环的次数,下 ...
- 随手练——POJ - 2676 数独 (回溯法)
POJ - 2676 : http://poj.org/problem?id=2676: 解题思想 (大力出奇迹): 1. 依次在空格里面填上“1~9”,并检查这个数字是否合法(其所在的行.列,以及3 ...
- Jmeter服务器监控插件使用
Jmeter服务器监控插件使用 Jmeter-Plugins支持CPU.Memory.Swap.Disk和Network的监控,在测试过程中更加方便进行结果收集和统计分析. 一.准备工作: 1.下载J ...
- UICollectionViewFlowLayout 的 estimatedItemSize 属性
这个是collectionView的item 自适应fram的属性, 介绍在网上很多, 但是用法没有太多的举例, 其实这个属性的使用也很简单, 随便给它的不为CGSizeZero的值就好, 但是, 但 ...
- js实现限制上传文件大小
<html> <head> <script type="text/javascript"> var isIE = /msie/i.test(na ...
- 404 Note Found 队 Alpha8
目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:凯琳 组员6:翟丹丹 组员7:何家伟 组员8:政演 组员9:黄鸿杰 组员10:刘一好 组员11:何宇恒 展示 ...
- Linux API fork 子进程 创建 & 无名管道通信
#include<unistd.h> #include<stdio.h> int main() { ]; ]; pipe(filedes); printf("my p ...
- Python装饰器高级用法
在Python中,装饰器一般用来修饰函数,实现公共功能,达到代码复用的目的.在函数定义前加上@xxxx,然后函数就注入了某些行为,很神奇!然而,这只是语法糖而已. 场景 假设,有一些工作函数,用来对数 ...