Description

传送门

Solution

em又是神仙题。

考虑到目前的一个凸包,顶点点集为S。

现在在它内部或边缘上的点集为T,则贡献为2|T|−|S|,设从T中去掉S的点后得到了集合A。则2|T|−|S|=2|A|

可知AUS的凸包点集还是S。

好的关键点:A的子集个数为2|A|。怎么样是不是特别棒?

设A'是A的子集,A'US的凸包点集还是为S,这样的A'也恰好有2|A|个,完美。

所以,所有凸包点集为S的点集G,对答案的贡献都为1。

然后注意这里要记得排除共线的情况。假如G中所有点都共线就无法形成凸包啦,减掉这些就OK。PS:空集也要减掉

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
const int mod=;
int n;
ll pw[],ans=;
struct node{int x,y;
}p[];
bool check(node a,node b,node c)
{ return (b.x-a.x)*(c.y-a.y)==(b.y-a.y)*(c.x-a.x);}
void link(int x,int y){x+=y;}
int main()
{
link(,);
scanf("%d",&n);
pw[]=;
for (int i=;i<=n;i++) pw[i]=(pw[i-]<<)%mod;
for (int i=;i<=n;i++) scanf("%d%d",&p[i].x,&p[i].y); ans=(pw[n]-n-+mod)%mod;bool _is;int cnt;
for (int i=;i<n;i++)
for (int j=i+;j<=n;j++)
{
_is=;
for (int k=;k<i;k++) if (check(p[k],p[i],p[j])) {_is=;break;}
for (int k=i+;k<j;k++) if (check(p[k],p[i],p[j])) {_is=;break;}
if (!_is) continue;
cnt=;
for (int k=j+;k<=n;k++) if (check(p[k],p[i],p[j])) cnt++;
ans=(ans-pw[cnt]+cnt++mod)%mod;
}
cout<<ans;
}

[arc082E]ConvexScore-[凸包]的更多相关文章

  1. [arc082e]ConvexScore

    题意: 给出直角坐标系中的$N$个点$(X_i,Y_i)$,定义由其中部分点构成的点集为“凸点集”当且仅当这些点恰好能构成一个凸多边形(内部没有其他点). 如图,点集$\{A,C,E\}$和$\{B, ...

  2. ARC082E ConvexScore(神奇思路)

    这题就是拼拼凑凑就出来了. 可能看英文题面容易题意杀(小写大写 \(n,N\)),这里复述一遍:对于每个构成凸多边形的点集(每个点恰好都是凸多边形的顶点,必须是严格的凸多边形,内角严格小于 180 度 ...

  3. AtCoder刷题记录

    构造题都是神仙题 /kk ARC066C Addition and Subtraction Hard 首先要发现两个性质: 加号右边不会有括号:显然,有括号也可以被删去,答案不变. \(op_i\)和 ...

  4. NOIp2018模拟赛三十三

    神奇的一场... 成绩:100+0+14=114 A题是个体面很恐怖的题...然而看懂题意之后转化一下就变成了一道暴力傻逼题...但是不知道为什么dalao们都没写,讲题的时候挺尴尬的...yrx“瞄 ...

  5. 【ARC082E】ConvexScore

    Description 给定二维直角坐标系上的N个点\((X_i,Y_i)\),定义一个有N个点中的部分点所构成点集为"凸点集",当且仅当该集合内的所有点恰好构成一个面积为正的凸多 ...

  6. [poj1113][Wall] (水平序+graham算法 求凸包)

    Description Once upon a time there was a greedy King who ordered his chief Architect to build a wall ...

  7. ZOJ 3871 Convex Hull(计算几何、凸包)

    题意:给n个点,|x[i]|,|y[i]| <= 1e9.求在所有情况下的子集下(子集点数>=3),凸包的面积和. 这题主要有几个方面,一个是凸包的面积,可以直接用线段的有向面积和求得,这 ...

  8. UVALive 2453 Wall (凸包)

    题意:给你一个多边形的城堡(多个点),使用最短周长的城墙将这个城堡围起来并保证城墙的每个点到城堡上的每个点的距离都不小于l 题解:因为两点间的直线一定比折线短,所以这样做 先使用所有点求得一个凸包,接 ...

  9. UVA 11168 Airport(凸包+直线方程)

    题意:给你n[1,10000]个点,求出一条直线,让所有的点都在都在直线的一侧并且到直线的距离总和最小,输出最小平均值(最小值除以点数) 题解:根据题意可以知道任意角度画一条直线(所有点都在一边),然 ...

  10. 关于2016.12.12——T1的反思:凸包的意义与应用

    2016.12.12 T1 给n个圆,保证圆圆相离,求将圆围起来的最小周长.n<=100 就像上图.考场上,我就想用切线的角度来做凸包.以圆心x,y排序,像点凸包一样,不过用两圆之间的下切线角度 ...

随机推荐

  1. Mysql group by top N的问题

    在日常工作中,经常要查询分组的前几名.oracle中可以通过row_num来支持查询,mysql暂时不支持row_num.那么如何来完成这个需求呢? 例如: 表中的数据: +--------+---- ...

  2. 弹框插件self(动效兼容到IE9,功能兼容IE6)

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...

  3. 数据类型.md

    数据类型 整型 数据类型 含义(有符号) tinyint(m) 1个字节 范围(-128~127) smallint(m) 2个字节 范围(-32768~32767) mediumint(m) 3个字 ...

  4. angularjs select下拉搜索框

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. 【LGP5162】WD与积木

    题目 场面过度玄学,容易引起不适 我们发现我们要求的这个期望由分母和分子两部分构成 易发现 \[Ans=\frac{\sum_{i=1}^nS_2(n,i)\times i\times i!}{\su ...

  6. Spring(六)之自动装配

    一.自动装配模型 下面是自动连接模式,可以用来指示Spring容器使用自动连接进行依赖注入.您可以使用元素的autowire属性为bean定义指定autowire模式. 可以使用 byType 或者  ...

  7. Ubuntu安装PHP7

    安装PHP7 Ubuntu 16.04官方源自带PHP7,所以可以直接使用apt-get来安装. (1)安装PHP7以及常用扩展. -fpm php7.-mysql php7.-common php7 ...

  8. 404 Note Found 队-Alpha10

    目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:凯琳 组员6:翟丹丹 组员7:何家伟 组员8:政演 组员9:黄鸿杰 组员10:刘一好 组员11:何宇恒 展示 ...

  9. Linux-- 文件编辑器 vi/vim(2)

    多文件编辑 vi 可以用来打开多个文件,如下: 进入编辑界面以后,输入 :n 可以切换到下一个文本,:N 可以切换到上一个文本,:files 列出目前这个 vi 打开的所有文件,举例如下: 切换到下一 ...

  10. weblogic.xml中的虚拟目录的配置

    项目中的Ueditor富文本编辑器中上传图片后要能够预览. 如下图: 实现: 配置weblogic的虚拟目录:项目名称是test 如图: 这个表示:所有的访问/uefile/*的路径都会被转发到服务器 ...