[arc082E]ConvexScore-[凸包]
Description
Solution
em又是神仙题。
考虑到目前的一个凸包,顶点点集为S。
现在在它内部或边缘上的点集为T,则贡献为2|T|−|S|,设从T中去掉S的点后得到了集合A。则2|T|−|S|=2|A|
可知AUS的凸包点集还是S。
好的关键点:A的子集个数为2|A|。怎么样是不是特别棒?
设A'是A的子集,A'US的凸包点集还是为S,这样的A'也恰好有2|A|个,完美。
所以,所有凸包点集为S的点集G,对答案的贡献都为1。
然后注意这里要记得排除共线的情况。假如G中所有点都共线就无法形成凸包啦,减掉这些就OK。PS:空集也要减掉
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
const int mod=;
int n;
ll pw[],ans=;
struct node{int x,y;
}p[];
bool check(node a,node b,node c)
{ return (b.x-a.x)*(c.y-a.y)==(b.y-a.y)*(c.x-a.x);}
void link(int x,int y){x+=y;}
int main()
{
link(,);
scanf("%d",&n);
pw[]=;
for (int i=;i<=n;i++) pw[i]=(pw[i-]<<)%mod;
for (int i=;i<=n;i++) scanf("%d%d",&p[i].x,&p[i].y); ans=(pw[n]-n-+mod)%mod;bool _is;int cnt;
for (int i=;i<n;i++)
for (int j=i+;j<=n;j++)
{
_is=;
for (int k=;k<i;k++) if (check(p[k],p[i],p[j])) {_is=;break;}
for (int k=i+;k<j;k++) if (check(p[k],p[i],p[j])) {_is=;break;}
if (!_is) continue;
cnt=;
for (int k=j+;k<=n;k++) if (check(p[k],p[i],p[j])) cnt++;
ans=(ans-pw[cnt]+cnt++mod)%mod;
}
cout<<ans;
}
[arc082E]ConvexScore-[凸包]的更多相关文章
- [arc082e]ConvexScore
题意: 给出直角坐标系中的$N$个点$(X_i,Y_i)$,定义由其中部分点构成的点集为“凸点集”当且仅当这些点恰好能构成一个凸多边形(内部没有其他点). 如图,点集$\{A,C,E\}$和$\{B, ...
- ARC082E ConvexScore(神奇思路)
这题就是拼拼凑凑就出来了. 可能看英文题面容易题意杀(小写大写 \(n,N\)),这里复述一遍:对于每个构成凸多边形的点集(每个点恰好都是凸多边形的顶点,必须是严格的凸多边形,内角严格小于 180 度 ...
- AtCoder刷题记录
构造题都是神仙题 /kk ARC066C Addition and Subtraction Hard 首先要发现两个性质: 加号右边不会有括号:显然,有括号也可以被删去,答案不变. \(op_i\)和 ...
- NOIp2018模拟赛三十三
神奇的一场... 成绩:100+0+14=114 A题是个体面很恐怖的题...然而看懂题意之后转化一下就变成了一道暴力傻逼题...但是不知道为什么dalao们都没写,讲题的时候挺尴尬的...yrx“瞄 ...
- 【ARC082E】ConvexScore
Description 给定二维直角坐标系上的N个点\((X_i,Y_i)\),定义一个有N个点中的部分点所构成点集为"凸点集",当且仅当该集合内的所有点恰好构成一个面积为正的凸多 ...
- [poj1113][Wall] (水平序+graham算法 求凸包)
Description Once upon a time there was a greedy King who ordered his chief Architect to build a wall ...
- ZOJ 3871 Convex Hull(计算几何、凸包)
题意:给n个点,|x[i]|,|y[i]| <= 1e9.求在所有情况下的子集下(子集点数>=3),凸包的面积和. 这题主要有几个方面,一个是凸包的面积,可以直接用线段的有向面积和求得,这 ...
- UVALive 2453 Wall (凸包)
题意:给你一个多边形的城堡(多个点),使用最短周长的城墙将这个城堡围起来并保证城墙的每个点到城堡上的每个点的距离都不小于l 题解:因为两点间的直线一定比折线短,所以这样做 先使用所有点求得一个凸包,接 ...
- UVA 11168 Airport(凸包+直线方程)
题意:给你n[1,10000]个点,求出一条直线,让所有的点都在都在直线的一侧并且到直线的距离总和最小,输出最小平均值(最小值除以点数) 题解:根据题意可以知道任意角度画一条直线(所有点都在一边),然 ...
- 关于2016.12.12——T1的反思:凸包的意义与应用
2016.12.12 T1 给n个圆,保证圆圆相离,求将圆围起来的最小周长.n<=100 就像上图.考场上,我就想用切线的角度来做凸包.以圆心x,y排序,像点凸包一样,不过用两圆之间的下切线角度 ...
随机推荐
- python BaseManager中register()的描述
register(typeid[, callable[, proxytype[, exposed[, method_to_typeid[, create_method]]]]]) A classmet ...
- HTML的CoreText流畅度超过WebView。CoreText第三方框架DTCoreText的介绍
为什么要用CoreText(富文本)来取代WebView去显示内容.主要的原因就WebView有很大的问题,性能,FPS,卡顿,与原生不搭.这些都是大问题. WebView的缺点 1.直接使用WebV ...
- 随手练——HDU 1284 动态规划入门
#include <iostream> #include <algorithm> #include <string.h> using namespace std; ...
- JNI由浅入深_2_C语言基础
*含义 1.乘法 3*5 2.定义指针变量 int * p://定义了一个名字叫p的变量,能够存放int数据类型的地址 3.指针运算符, //如果p是一个已经定义好的指针变量则*p表示以p的内容为地址 ...
- HDU Virtual Friends(超级经典的带权并查集)
Virtual Friends Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- 求1!+2!+3!+4!+5!+6!+7!+8!+9!+10!+...+N! N阶阶乘求和算法 JAVA C Python
一行代码算出1!+2!+3!+4!+5!+6!+7!+8!+9!+10!+...+N! N阶阶乘求和 时间复杂度为O(n) 空间复杂度为O(1) 对于任意正整数N 求1!-N!一行算出和给定求1 ...
- SSM项目引入文件失败
<mvc:resources mapping="/styles/**" location="/css/"/> <mvc:resources m ...
- DDL-库的管理
一.创建库create database [if not exists] 库名[ character set 字符集名]; 二.修改库alter database 库名 character set 字 ...
- Java中的类与对象
一.类与对象的概念 1.类:类是一组相同属性.方法的对象的集合:对象是类的具体化. 2.对象具有类所有的特征,类拥有的,对象就拥有. 3.类与对象他们的关系是相对的. 类有什么特点 1) 类是对象的类 ...
- Java实现目的选层电梯的调度
一.前言 本次博客我将简单介绍一下前两次的电梯作业,并简单解析一下我的程序结构,进一步对我的第二次作业的算法核心和一些想法做一些分享,我的电梯设计算法并不是由调度器来决定电梯的捎带与否,而是由电梯自主 ...