1.Aussagenlogik

1.1 Gleichwertiges Kalkül

1.2 Normalform

Einfache Disjunktion besteht aus Disjunktion endlicher Aussagensvariable order deren Negation

Einfache Konjunktion besteht aus Konjunktion endlicher Aussagensvariable oder deren Negation

Disjunktive Normalform besteht aus Disjunktion endlicher einfache Konjunktion

Konjunktive Normalform besteht aus Konjunktion endlicher einfache Disjunktion

Als Minimale Aritikel bezeichnen wir einfache Konjunktion

2.Menge

2.1 Das Begriff der Menge

Eine Menge ist ein Verbund, eine Zusammenfassung von einzelnen Elementen

N Tupel Menge hat 2n Teilmenge

2.2 Grundlegend Rechnung der Menge

Menge Berechnungsformel:

3.Binäre Beziehung

3.1 Kartesisches Produkt

Kartesisches Produkt:Wir setzen A,B als Menge voraus,wir benutzen A als erstes Element,B als zweites Element,dann sie setzen geordenetes Paar zusammen.Als A×B werden wir verzeichnen

A×B = {<x,y>|x∈A∩y∈B}

Beispiel:A={a,b},B={0,1,2}

Ergebnis der A×B ist

A×B={<a,0>,<a,1>,<a,2>,<b,0>,<b,1>,<b,2>}

Ergebnis der B×A ist

B×A={<0,a>,<0,b>,<1,a>,<1,b>,<2,a>,<2,b>}

Eigenschaften:

Kartesisches Produkt kann Kommutativgesetz und Assoziativgesetz nicht entsprechen,aber Distributivgesetz entsprechen

3.2 Berechnung der Menge

Difinitionsmenge:domR = {x|∃y(<x,y>∈R)}

Wertebereich:ranR= {y|∃x(<x,y>∈R)}

Gebiete:fldR = domR∪ranR

Beispiel

4.Graph

4.1 Ungerichtete Graph und gerichtete Graph

Graph G ist eine zwei Tupel <V,E>

V ist eine nicht leer endliche Menge,deren Teilmenge bezeichnen wir als Knoten

E ist eine Kantenmenge,deren Teilmenge bezeichnen wir als Kante

Es gibt nur eine Knoten,ohne Kante,bezeichnen wir es als trivial Graph

Bei ungerichtetem Graph,bezeichnen wir Knoten v,der als Endpunkt besetzt,als Grad

Bei gerichtetem Graph,bezeichnen wir Knoten,der als Startpunkt besetzt,Ausgangsgrad,als d+(v);

bezeichnen wir Knoten,der als Endpunkt besetzt,als Eingangsgrad,als d-(v)

Händeschüttelngesetz:Wir setzen Graph G=<V,E> als ungerichtete order gerichtete Graph voraus,V={v1,v2,...,Vn},|E| = m

Wir setzen Graph G=<V,E> als gerichtete Graph voraus,V={v1,v2,...,Vn},|E| = m

Beim ungerichtete Graph,der ungerichtete Kanten,der hängt mit ein Paar Knoten,großer als eins,bezeichnen wir ihn als parallel Kante

Beim gerichtete Graph,der Kanten,deren Startpunkt und Endpunkt gleich sind,bezeichnen wir sie gerichteten als parallel Kante

Einfaches Graph,ohne parallel und Kreis

G'⊆G und V'=V,bezeichnen wir G' spanning Teilgraph des G

4.2 Weg,Kreis und Anschlussmöglichkeit des Graphs

Wenn jede Kante nur ein Mal vorbeigegangen ist,bezeichnen wir es als einfachen Weg;Wenn v0 = vl,bezeichnen wir es als einfachen Kreis

Wenn jeder Knoten nur ein Mal vorbeigegangen ist,bezeichnen wir es als primär Weg;Wenn v0 = vl,bezeichnen wir es als primär Kreis

Beispiel

Bei einem ungerichtete Graph G,es besteht aus Weg zwischen u und v,bezeichnen es wir als "u und v ist zusammenhängend"

Bei einem ungerichtete Graph G oder trivial Graph G sind beliebig zwei Knoten zusammenhängend,bezeichnen wir es als verbundenes Graph,sonst als nicht verbundenes Graph

Bei einem gerichtete Graph D ignorieren wir alle Richtung der Kanten,bekommen wir gerichtete Graph,das zusammenhängend ist,bezeichnen wir es als schwach verbundenes Graph

Wenn beliebige Knoten des D am mindestens von einem Knoten nach anderem erreichen kann,bezeichnen wir es als einseitig verbundenes Graph

Wenn beliebige Knoten des D von einem Knoten nach anderm erreichen kann,bezeichnen wir es als stark verbundenes Graph

4.3 Martrix des Graph

4.3.1 Assoziationsmatrix

Beispiel

Bei ungerichtetem Graph

Bei gerichtetem Graph

4.3.2 Adjazenzmatrix

Bei gerichtetem Graph

4.4 Kürzester Pfad

4.4.1 dijkstra Algorithmus

Wir verwenden Menge S als aktuell kürzester Pfad,Menge U als Pfadmöglichkeiten

5.Baum

5.1 Huffman Algorithmus

W(Baum) = Die Summe des Verzweigungspunkt

W(Baum) = 42

Diskrete Mathematik的更多相关文章

  1. 2D and 3D Linear Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual

    1 Introduction CGAL, the Computational Geometry Algorithms Library, is written in C++ and consists o ...

  2. APS审核经验+审核资料汇总——计算机科学与技术专业上海德语审核

    1.APS是什么 德国驻华使馆文化处留德人员审核部(简称APS)成立于2001年7月,是由德国驻华使馆文化处和德意志学术交流中心(DAAD)在北京共同合作成立的服务机构. APS是中国学生前往德国留学 ...

  3. Mathematik

    Ausdruck auf Deutsch Lösen Problem der Abteilung. 求导. Die Abteilung von 3x ist 3. 3x的导数是3 Lösen Prob ...

  4. 差分进化算法 DE-Differential Evolution

    差分进化算法 (Differential Evolution)   Differential Evolution(DE)是由Storn等人于1995年提出的,和其它演化算法一样,DE是一种模拟生物进化 ...

  5. 转债---Pregel: A System for Large-Scale Graph Processing(译)

    转载:http://duanple.blog.163.com/blog/static/70971767201281610126277/   作者:Grzegorz Malewicz, Matthew ...

  6. DNS配置详解

    DNS简介在Linux中,域名服务(DNS)是由柏克莱网间名域(Berkeley Internet Name Domain——BIND)软件实现的.BIND是一个客户/服务系统,它的客户方面称为转换程 ...

  7. GPU深度发掘(一)::GPGPU数学基础教程

    作者:Dominik Göddeke                 译者:华文广 Contents 介绍 准备条件 硬件设备要求 软件设备要求 两者选择 初始化OpenGL GLUT OpenGL ...

  8. c++资源之不完全导引 (转)

    c++资源之不完全导引 (转) 转:http://www.cnblogs.com/suiyingjie/archive/2008/02/24/1079411.html 本文2004年5月首发于< ...

  9. Pregel: A System for Large-Scale Graph Processing(译)

    [说明:Pregel这篇是发表在2010年的SIGMOD上,Pregel这个名称是为了纪念欧拉,在他提出的格尼斯堡七桥问题中,那些桥所在的河就叫Pregel.最初是为了解决PageRank计算问题,由 ...

随机推荐

  1. [Erlang32]ibrowse流程及性能测试

    1.简介 ibrowse是用erlang写的一个HTTP client.github地址:https://github.com/cmullaparthi/ibrowse 使用方法见项目的readme. ...

  2. docker容器怎么设置开机启动

    https://my.oschina.net/lwenhao/blog/1923003 docker服务器.以及容器设置自动启动 一.docker服务设置自动启动 说明:适用于yum安装的各种服务 查 ...

  3. Session如何保存在sql数据库中

    aspnet中,session默认以inproc模式存储,也就是保存在iis进程中,这样有个优点就是效率高,但不利于为本负载均衡扩展.可以把session信息保存在SQL Server中,据说,该种方 ...

  4. (zxing.net)二维码PDF417的简介、实现与解码

    一.简介 二维码PDF417是一种堆叠式二维条码.PDF417条码是由美国SYMBOL公司发明的,PDF(Portable Data File)意思是“便携数据文件”.组成条码的每一个条码字符由4个条 ...

  5. 关于SqlServer连接错误

    以前用数据库好好的,今天突然就出现连接错误,贴出出错误消息 出现这种错误的原因:服务里面sqlserver服务没有打开. 解决方案 : 计算机右键,打开管理,找到服务,把服务里面的SQL Server ...

  6. C# WebService调用方法

    public class WebServiceHelper    {        /// < summary>         /// 动态调用web服务         /// < ...

  7. 纸壳CMS 3.0升级.Net Core 2.1性能大提升

    微软发布了.Net Core 2.1正式版,纸壳CMS也在第一时间做了升级,并做了一系列的优化和调整,性能大幅提升,并解决了一些历史遗留问题,添加了一些新功能. Github https://gith ...

  8. 7-Linq查询语言

    本篇博客对应视频讲解 回顾 上一期我们讲解了字符编码相关的内容,大家应该去理解字符和字节之间的关系.并学习使用Encoding类进行编码之间的转换. 今天给大家讲的内容十分的重要,也是C#等语言比其他 ...

  9. 销售系统项目业务分析和Java中使用邮箱

    项目一般大致可分为三个模块, 我们以销售系统为例 分为 基础模块 进货模块 财务模块三个 基础模块分为:权限模块 产品模块和基础代码,基础模块的设计十分重要会影响到整个项目, 代码较为简单 核心模块 ...

  10. Android Studio设置字体

    一,点"Settings"按钮,调出配置界面: 然后如图找到 Editor-colors&font-font ,默认的不让修改 所以先点击save as  随便起个名字 , ...