Diskrete Mathematik
1.Aussagenlogik
1.1 Gleichwertiges Kalkül

1.2 Normalform
Einfache Disjunktion besteht aus Disjunktion endlicher Aussagensvariable order deren Negation
Einfache Konjunktion besteht aus Konjunktion endlicher Aussagensvariable oder deren Negation
Disjunktive Normalform besteht aus Disjunktion endlicher einfache Konjunktion
Konjunktive Normalform besteht aus Konjunktion endlicher einfache Disjunktion
Als Minimale Aritikel bezeichnen wir einfache Konjunktion

2.Menge
2.1 Das Begriff der Menge
Eine Menge ist ein Verbund, eine Zusammenfassung von einzelnen Elementen
N Tupel Menge hat 2n Teilmenge
2.2 Grundlegend Rechnung der Menge
Menge Berechnungsformel:

3.Binäre Beziehung
3.1 Kartesisches Produkt
Kartesisches Produkt:Wir setzen A,B als Menge voraus,wir benutzen A als erstes Element,B als zweites Element,dann sie setzen geordenetes Paar zusammen.Als A×B werden wir verzeichnen
A×B = {<x,y>|x∈A∩y∈B}
Beispiel:A={a,b},B={0,1,2}
Ergebnis der A×B ist
A×B={<a,0>,<a,1>,<a,2>,<b,0>,<b,1>,<b,2>}
Ergebnis der B×A ist
B×A={<0,a>,<0,b>,<1,a>,<1,b>,<2,a>,<2,b>}
Eigenschaften:
Kartesisches Produkt kann Kommutativgesetz und Assoziativgesetz nicht entsprechen,aber Distributivgesetz entsprechen
3.2 Berechnung der Menge
Difinitionsmenge:domR = {x|∃y(<x,y>∈R)}
Wertebereich:ranR= {y|∃x(<x,y>∈R)}
Gebiete:fldR = domR∪ranR

Beispiel

4.Graph
4.1 Ungerichtete Graph und gerichtete Graph
Graph G ist eine zwei Tupel <V,E>
V ist eine nicht leer endliche Menge,deren Teilmenge bezeichnen wir als Knoten
E ist eine Kantenmenge,deren Teilmenge bezeichnen wir als Kante
Es gibt nur eine Knoten,ohne Kante,bezeichnen wir es als trivial Graph
Bei ungerichtetem Graph,bezeichnen wir Knoten v,der als Endpunkt besetzt,als Grad
Bei gerichtetem Graph,bezeichnen wir Knoten,der als Startpunkt besetzt,Ausgangsgrad,als d+(v);
bezeichnen wir Knoten,der als Endpunkt besetzt,als Eingangsgrad,als d-(v)
Händeschüttelngesetz:Wir setzen Graph G=<V,E> als ungerichtete order gerichtete Graph voraus,V={v1,v2,...,Vn},|E| = m

Wir setzen Graph G=<V,E> als gerichtete Graph voraus,V={v1,v2,...,Vn},|E| = m

Beim ungerichtete Graph,der ungerichtete Kanten,der hängt mit ein Paar Knoten,großer als eins,bezeichnen wir ihn als parallel Kante
Beim gerichtete Graph,der Kanten,deren Startpunkt und Endpunkt gleich sind,bezeichnen wir sie gerichteten als parallel Kante
Einfaches Graph,ohne parallel und Kreis
G'⊆G und V'=V,bezeichnen wir G' spanning Teilgraph des G
4.2 Weg,Kreis und Anschlussmöglichkeit des Graphs
Wenn jede Kante nur ein Mal vorbeigegangen ist,bezeichnen wir es als einfachen Weg;Wenn v0 = vl,bezeichnen wir es als einfachen Kreis
Wenn jeder Knoten nur ein Mal vorbeigegangen ist,bezeichnen wir es als primär Weg;Wenn v0 = vl,bezeichnen wir es als primär Kreis
Beispiel

Bei einem ungerichtete Graph G,es besteht aus Weg zwischen u und v,bezeichnen es wir als "u und v ist zusammenhängend"
Bei einem ungerichtete Graph G oder trivial Graph G sind beliebig zwei Knoten zusammenhängend,bezeichnen wir es als verbundenes Graph,sonst als nicht verbundenes Graph
Bei einem gerichtete Graph D ignorieren wir alle Richtung der Kanten,bekommen wir gerichtete Graph,das zusammenhängend ist,bezeichnen wir es als schwach verbundenes Graph
Wenn beliebige Knoten des D am mindestens von einem Knoten nach anderem erreichen kann,bezeichnen wir es als einseitig verbundenes Graph
Wenn beliebige Knoten des D von einem Knoten nach anderm erreichen kann,bezeichnen wir es als stark verbundenes Graph

4.3 Martrix des Graph
4.3.1 Assoziationsmatrix
Beispiel
Bei ungerichtetem Graph


Bei gerichtetem Graph


4.3.2 Adjazenzmatrix
Bei gerichtetem Graph


4.4 Kürzester Pfad
4.4.1 dijkstra Algorithmus

Wir verwenden Menge S als aktuell kürzester Pfad,Menge U als Pfadmöglichkeiten

5.Baum
5.1 Huffman Algorithmus
W(Baum) = Die Summe des Verzweigungspunkt

W(Baum) = 42
Diskrete Mathematik的更多相关文章
- 2D and 3D Linear Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual
1 Introduction CGAL, the Computational Geometry Algorithms Library, is written in C++ and consists o ...
- APS审核经验+审核资料汇总——计算机科学与技术专业上海德语审核
1.APS是什么 德国驻华使馆文化处留德人员审核部(简称APS)成立于2001年7月,是由德国驻华使馆文化处和德意志学术交流中心(DAAD)在北京共同合作成立的服务机构. APS是中国学生前往德国留学 ...
- Mathematik
Ausdruck auf Deutsch Lösen Problem der Abteilung. 求导. Die Abteilung von 3x ist 3. 3x的导数是3 Lösen Prob ...
- 差分进化算法 DE-Differential Evolution
差分进化算法 (Differential Evolution) Differential Evolution(DE)是由Storn等人于1995年提出的,和其它演化算法一样,DE是一种模拟生物进化 ...
- 转债---Pregel: A System for Large-Scale Graph Processing(译)
转载:http://duanple.blog.163.com/blog/static/70971767201281610126277/ 作者:Grzegorz Malewicz, Matthew ...
- DNS配置详解
DNS简介在Linux中,域名服务(DNS)是由柏克莱网间名域(Berkeley Internet Name Domain——BIND)软件实现的.BIND是一个客户/服务系统,它的客户方面称为转换程 ...
- GPU深度发掘(一)::GPGPU数学基础教程
作者:Dominik Göddeke 译者:华文广 Contents 介绍 准备条件 硬件设备要求 软件设备要求 两者选择 初始化OpenGL GLUT OpenGL ...
- c++资源之不完全导引 (转)
c++资源之不完全导引 (转) 转:http://www.cnblogs.com/suiyingjie/archive/2008/02/24/1079411.html 本文2004年5月首发于< ...
- Pregel: A System for Large-Scale Graph Processing(译)
[说明:Pregel这篇是发表在2010年的SIGMOD上,Pregel这个名称是为了纪念欧拉,在他提出的格尼斯堡七桥问题中,那些桥所在的河就叫Pregel.最初是为了解决PageRank计算问题,由 ...
随机推荐
- Selenium下拉菜单(Select)的操作-----Selenium快速入门(五)
对于一般元素的操作,我们只要掌握本系列的第二,三章即可大致足够.对于下拉菜单(Select)的操作,Selenium有专门的类Select进行处理.文档地址为:http://seleniumhq.gi ...
- 记开发个人图书收藏清单小程序开发(五)Web开发
决定先开发Web端试试. 新增Web应用: 选择ASP.NET Core Web Application,填写好Name和Location,然后点击OK. 注意红框标出来的,基于.NET Core 2 ...
- Python脱产8期 Day15 2019/4/30
一 生成器send方法 1.send的工作原理# 1.send发生信息给当前停止的yield# 2.再去调用__next__()方法,生成器接着往下指向,返回下一个yield值并停止 2.例: per ...
- 那些令人敬佩的刚学OI的大佬
我是萌新刚学OI,请问LCT怎么写常树最小啊 我是女生刚学OI,请问树链剖分哪里写挂了? 萌新求教,这棵SBT哪里有问题啊啊啊…… 刚学OI,请问可持久化非确定状态AC自动分块维护线段平衡仙人掌优化最 ...
- 基于python复制蓝鲸作业平台
前言 去年看武sir代码发布的视频无意中听到了蓝鲸平台但是一直没深究,前一段时间公司要搞一个代码发布平台,但是需求变化很多一直找不到一个很好的参考 模板,直到试用了一下蓝鲸作业平台发现“一切皆作业”的 ...
- DataTables复杂表头
工作上的需要,要做一个复杂的表头的DataTables thead如下 遇到的问题(详细问题可以浏览官网的答案 链接) 需自定义表头(thead),如果不自定义则会 Cannot read prope ...
- C++ class和struct的区别
class和struct定义类唯一的区别就是默认的访问权限. 如果我们使用struct关键字,则定义在第一个访问说明符之前的成员是public的:相反,如果我们使用class关键字,组这些成员是pri ...
- 最新版chrome浏览器如何离线安装crx插件?(转载)
原文链接:https://newsn.net/say/chrome-crx-offline.html mac新版chrome开启离线插件安装 对于mac新版chrome,注意,大家一定要按照顺序来.m ...
- 洛谷P3830 [SHOI2012]随机树(期望dp)
题面 luogu 题解 第一问: 设\(f[i]\)表示\(i\)步操作后,平均深度期望 \(f[i] = \frac {f[i - 1] * (i - 1)+f[i-1]+2}{i}=f[i-1]+ ...
- AES对称加解密
简介设计思想加密模式ECB模式(电子密码本模式:Electronic codebook)CBC模式(密码分组链接:Cipher-block chaining)CFB模式(密文反馈:Cipher fee ...