题目:给定一个n个点m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大。你只需要求出这个权值和。

   允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次。

题目简述:先tarjan缩点,再从入度为零处进行一次拓扑排序,求最长路即可,话说拓扑排序求最长路真方便。。。

注意: 要明确拓扑的写法,用栈写最优。

    再进行拓扑排序之前我们要进行将点权转化为边权的操作,具体操作看拓扑排序。

 #include<bits/stdc++.h>
using namespace std;
#define man 100010
inline int sc()
{ int x=,f=;char ch=getchar();
while(!isdigit(ch)){ if(ch==)f=-;ch=getchar();}
while(isdigit(ch)) { x=x*+ch-;ch=getchar();}
return x*f;
}
/*TEST*/
int n,m,c[man],x[man],y[man];
/*EDGE*/
int head[man<<],num=;
struct edge
{ int next,to,dis;}e[man<<];
inline void add(int from,int to,int dis)
{ e[++num].next=head[from];
e[num].to=to;
e[num].dis=dis;
head[from]=num;
}
/*TARJAN*/
int dfn[man],low[man],bel[man],val[man],cnt=,dep=;
bool vis[man];
int sta[man],top=;
void tarjan(int s)
{ low[s]=dfn[s]=++dep;vis[s]=;sta[++top]=s;
for(int i=head[s];i;i=e[i].next)
{ int to=e[i].to;
if(!dfn[to])
{ tarjan(to);
low[s]=min(low[s],low[to]);
}
else if(vis[to])
{ low[s]=min(low[s],dfn[to]);}
}
if(low[s]==dfn[s])
{ int j;cnt++;
do
{ j=sta[top--];
vis[j]=;
val[cnt]+=c[j];
bel[j]=cnt;
}while(j!=s);
}
}
/*TOPSORT*/
inline void clear()
{ memset(e,,sizeof(e));
memset(head,,sizeof(head));
num=;
}
int degree[man],dis[man];
inline void topsort()
{ queue<int >q;
for(int i=;i<=cnt;i++)
dis[i]=;
for(int i=;i<=cnt;i++)
if(degree[i]==) q.push(i),dis[i]=val[i];
while(q.size()!=)
{ int u=q.front();q.pop();
for(int i=head[u];i;i=e[i].next)
{ int to=e[i].to;
degree[to]--;
if(degree[to]==) q.push(to);
dis[to]=max(dis[to],dis[u]+e[i].dis);
}
}
int ans=;
for(int i=;i<=cnt;i++)
ans=max(ans,dis[i]);
printf("%d\n",ans);
}
int main()
{ n=sc();m=sc();
for(int i=;i<=n;i++)
c[i]=sc();
for(int i=;i<=m;i++)
{ x[i]=sc(),y[i]=sc();
add(x[i],y[i],);
}
for(int i=;i<=n;i++)
if(!dfn[i]) tarjan(i);
clear();
for(int i=;i<=m;i++)
{ if(bel[ x[i] ]==bel[ y[i] ]) continue;
add(bel[x[i]],bel[y[i]],val[bel[y[i]]]);
degree[bel[y[i]]]++;
}
topsort();
return ;
}

[模板]tarjan缩点+拓扑排序的更多相关文章

  1. [HAOI2006]受欢迎的牛 tarjan缩点 + 拓扑排序

    ---题面--- 题解: 首先tarjan缩点应该还是容易想到的,因为喜爱具有传递性,所以一个强联通分量里面的点实际上是全部等效的,所以我们可以缩成一个方便判断, 缩完点之后整张图就变成了一个有向无环 ...

  2. 【洛谷 P1073】 最优贸易 (Tarjan缩点+拓扑排序)

    题目链接 先\(Tarjan\)缩点,记录每个环内的最大值和最小值. 然后跑拓扑排序,\(Min[u]\)表示到\(u\)的最小值,\(ans[u]\)表示到\(u\)的答案,\(Min\)和\(an ...

  3. [luogu2272 ZJOI2007] 最大半连通子图 (tarjan缩点 拓扑排序 dp)

    传送门 题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向 ...

  4. 【2019.7.26 NOIP模拟赛 T3】化学反应(reaction)(线段树优化建图+Tarjan缩点+拓扑排序)

    题意转化 考虑我们对于每一对激活关系建一条有向边,则对于每一个点,其答案就是其所能到达的点数. 于是,这个问题就被我们搬到了图上,成了一个图论题. 优化建图 考虑我们每次需要将一个区间向一个区间连边. ...

  5. [ZJOI2007]最大半连通子图 (Tarjan缩点,拓扑排序,DP)

    题目链接 Solution 大概是个裸题. 可以考虑到,如果原图是一个有向无环图,那么其最大半联通子图就是最长的一条路. 于是直接 \(Tarjan\) 缩完点之后跑拓扑序 DP就好了. 同时由于是拓 ...

  6. codeforces1213F tarjan缩点+拓扑排序

    题意 给定两个长度为n的排列p和q,构造一个字符串s满足\(s[p_i]<=s[p_{i+1}]\)和\(s[q_i]<=s[q_{i+1}]\),且满足字符串中不同字符的个数不少于k. ...

  7. bzoj5017 [Snoi2017]炸弹 (线段树优化建图+)tarjan 缩点+拓扑排序

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5017 题解 这个题目方法挺多的. 线段树优化建图 线段树优化建图的做法应该挺显然的,一个炸弹能 ...

  8. HDU 6165 FFF at Valentine(Tarjan缩点+拓扑排序)

    FFF at Valentine Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  9. UVA 11324.The Largest Clique tarjan缩点+拓扑dp

    题目链接:https://vjudge.net/problem/UVA-11324 题意:求一个有向图中结点数最大的结点集,使得该结点集中任意两个结点u和v满足:要目u可以到达v,要么v可以到达u(相 ...

随机推荐

  1. Yii用AJAX注册验证

    <script type="text/javascript"> $(document).ready(function(){ $('#RegisterForm_usern ...

  2. guake terminal

    类是gnome的终端,超级棒. F11可以全屏/半屏,F12可以显示/隐藏.右键--首选项可以设置配置信息.

  3. 【C#】App_LocalResources实现多语言

    介绍 如果您创建的网页将由使用不同语言的用户阅读,则必须为这些读者提供用他们自己的语言查看网页的方法.一种方法是分别用各语言重新创建页面,但这种方法可能需要大量工作量.容易出错并且在更改原始页时很难维 ...

  4. nexus helm proxy 集成&&问题解决

      对于使用kubernetes 进行开发的人员来说helm是很方便的 构建nexus helm plugin git clone https://github.com/sonatype-nexus- ...

  5. WiFi密码破解详细图文教程

    每天都能看到有不少网友在回复论坛之前发布的一篇破解WiFi密码的帖子,并伴随各种疑问.今天流云就为大家准备一篇实战型的文章吧,详细图文从思维CDlinux U盘启动到中文设置,如何进行路由SSID扫描 ...

  6. errno.h的数字对应的字符串错误

    #ifndef _I386_ERRNO_H #define _I386_ERRNO_H #define EPERM 1 /* Operation not permitted */ #define EN ...

  7. [Android] 开发第八天

    View 类是所有 UI组件的基类,它包含的 XML 属性和方法是所有组件都可使用的. ViewGroup 继承了 View 类,主要当作容器类使用,它是一个抽象类,实际使用中会使用它的子类作为容器. ...

  8. ROS多线接入和多线对外提供服务的完整做法,谁进谁出,电信进电信出,联通进联通出,移动进移动出

    1.网卡接入: 电信移动联通,三线接入,LAN是局域网. 5.从www.tcp5.com,下载联通和移动的路由表,并导入.这边简单说下导入步骤,下载rsc文件,上传到ROS的FTP上,然后用命令imp ...

  9. py基础3--函数,递归,内置函数

    本节内容 函数基本语法及特性 参数与局部变量 返回值 嵌套函数 递归 匿名函数 函数式编程介绍 高阶函数 内置函数 1. 函数基本语法及特性 背景提要 现在老板让你写一个监控程序,监控服务器的系统状况 ...

  10. python socket 详细介绍

    Python 提供了两个基本的 socket 模块. 第一个是 Socket,它提供了标准的 BSD Sockets API. 第二个是 SocketServer, 它提供了服务器中心类,可以简化网络 ...