You are a given a list of integers a 1 ,a 2 ,…,a n  a1,a2,…,an and s s of its segments [l j ;r j ] [lj;rj] (where 1≤l j ≤r j ≤n 1≤lj≤rj≤n ).

You need to select exactly m m segments in such a way that the k k -th order statistic of the multiset of a i  ai , where i i is contained in at least one segment, is the smallest possible. If it's impossible to select a set of m m segments in such a way that the multiset contains at least k k elements, print -1.

The k k -th order statistic of a multiset is the value of the k k -th element after sorting the multiset in non-descending order.

Input

The first line contains four integers n n , s s , m m and k k (1≤m≤s≤1500 1≤m≤s≤1500 , 1≤k≤n≤1500 1≤k≤n≤1500 ) — the size of the list, the number of segments, the number of segments to choose and the statistic number.

The second line contains n n integers a i  ai (1≤a i ≤10 9  1≤ai≤109 ) — the values of the numbers in the list.

Each of the next s s lines contains two integers l i  li and r i  ri (1≤l i ≤r i ≤n 1≤li≤ri≤n ) — the endpoints of the segments.

It is possible that some segments coincide.

Output

Print exactly one integer — the smallest possible k k -th order statistic, or -1 if it's impossible to choose segments in a way that the multiset contains at least k k elements.

Examples

Input
4 3 2 2
3 1 3 2
1 2
2 3
4 4
Output
2
Input
5 2 1 1
1 2 3 4 5
2 4
1 5
Output
1
Input
5 3 3 5
5 5 2 1 1
1 2
2 3
3 4
Output
-1

题意:给定给N个点,以及M个线段,让你选择S个线段,使得至少被一个线段覆盖的点排序后,第K大最小,没有则输出-1。

思路:求第K大最小,显然需要二分,每次验证看当前的mid是否有大于等于K个数小于mid。验证我们用dp来验证,复杂度是O(NMS*lgN);

需要优化掉一个。这里用背包把M优化掉了,我们找到每个点的Next,Next代表包含这个点的最右端。就不难得到dp方程,这个时候M已经没用了。

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
struct in{ int L,R;}s[maxn];
int a[maxn],b[maxn],N,S,M,K,sum[maxn];
int dp[maxn][maxn],Next[maxn];
bool check(int Mid) //M个选最多S个的第K大
{
rep(i,,N) sum[i]=sum[i-]+(a[i]<=Mid);
rep(i,,S) rep(j,,N) dp[i][j]=;
rep(i,,S){
rep(j,,N) dp[i][j]=max(dp[i][j],dp[i-][j]); //不选j位置。
rep(j,,N) if(Next[j]) dp[i][Next[j]]=max(dp[i][Next[j]],dp[i-][j-]+sum[Next[j]]-sum[j-]); //选j
rep(j,,N) dp[i][j]=max(dp[i][j],dp[i][j-]);
}
return dp[S][N]>=K;
}
int main()
{
scanf("%d%d%d%d",&N,&M,&S,&K);
rep(i,,N) scanf("%d",&a[i]),b[i]=a[i];
rep(i,,M) scanf("%d%d",&s[i].L,&s[i].R);
rep(i,,M) rep(j,s[i].L,s[i].R) Next[j]=max(Next[j],s[i].R);
sort(b+,b+N+); int L=,R=N,Mid,ans=-;
while(L<=R){
Mid=(L+R)>>;
if(check(b[Mid])) ans=b[Mid],R=Mid-;
else L=Mid+;
}
printf("%d\n",ans);
return ;
}

CF-1055E:Segments on the Line (二分&背包&DP优化)(nice problem)的更多相关文章

  1. BZOJ 1044 木棍分割(二分答案 + DP优化)

    题目链接  木棍分割 1044: [HAOI2008]木棍分割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3830  Solved: 1453[S ...

  2. HDU 1171 Big Event in HDU 多重背包二进制优化

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1171 Big Event in HDU Time Limit: 10000/5000 MS (Jav ...

  3. hdu 5534 Partial Tree 背包DP

    Partial Tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid= ...

  4. Codeforces Codeforces Round #319 (Div. 2) B. Modulo Sum 背包dp

    B. Modulo Sum Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/577/problem/ ...

  5. noj [1479] How many (01背包||DP||DFS)

    http://ac.nbutoj.com/Problem/view.xhtml?id=1479 [1479] How many 时间限制: 1000 ms 内存限制: 65535 K 问题描述 The ...

  6. luogu 4377 Talent show 01分数规划+背包dp

    01分数规划+背包dp 将分式下面的部分向右边挪过去,通过二分答案验证, 注意二分答案中如果验证的mid是int那么l=mid+1,r=mid-1,double类型中r=mid,l=mid; 背包dp ...

  7. bzoj5281/luogu4377 Talent Show (01分数规划+背包dp)

    就是01分数规划的思路,只不过当把w[i]-r*t[i]>0的选完以后如果w值还没达到要求,那就再01背包dp一下就好了(dp时w值>W的时候就存在W里就不会爆内存了). (跑得很慢..大 ...

  8. POJ-2018 Best Cow Fences(二分加DP)

    Best Cow Fences Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 10174 Accepted: 3294 Desc ...

  9. HDU 3591 (完全背包+二进制优化的多重背包)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3591 The trouble of Xiaoqian Time Limit: 2000/1000 M ...

随机推荐

  1. Java小项目迷你图书管理系统

    package 迷你图书管理系统; import java.util.Scanner; public class BookMgr { public static void main(String[] ...

  2. idea中使用插件Grep Console在IDEA的log的不同的级别,可以设置不同的颜色。

    一.安装. 1. 2. 3. 二,使用. 1. 2.

  3. LCS 最长公共子子串

    与 最长公共子序列类似 只是最长公共子串必须连续 所以只能走斜线!!!! ''' LCS 最长公共子序列 ''' def LCS_len(x, y): m = len(x) n = len(y) dp ...

  4. Java面试:投行的15个多线程和并发面试题

    多线程和并发问题已成为各种 Java 面试中必不可少的一部分.如果你准备参加投行的 Java 开发岗位面试,比如巴克莱银行(Barclays).花旗银行(Citibank).摩根史坦利投资公司(Mor ...

  5. python webdriver 测试框架-数据驱动DDT的例子

    先在cmd环境 运行 pip install ddt 安装数据驱动ddt模块  脚本: #encoding=utf-8 from selenium import webdriver import un ...

  6. centos7修改hostname

    [root@centos7 ~]$ hostnamectl set-hostname prd_web1 # 使用这个命令会立即生效且重启也生效 [root@centos7 ~]$ hostname # ...

  7. Python3.x的BeautifulSoup解析html常用函数

    Python3.x的BeautifulSoup解析html常用函数 1,初始化: soup = BeautifulSoup(html) # html为html源代码字符串,type(html) == ...

  8. 2018-2019-1 20189215 《Linux内核原理与分析》第六周作业

    <庖丁解牛>第五章书本知识总结 system_call并不是一个普通的函数,只是一段汇编代码的起点,且内部没有严格遵守函数调用堆栈机制. 通过set_system_trap_gate函数绑 ...

  9. LSB含义

    LSB(Least Significant Bit)最低有效位,对任何AD来说,量化后输出的数字信号值都是以1LSB的电压值步进的,介于1LSB之间的电压将按照一定的规则进行入位或舍弃,这个过程中造成 ...

  10. JAVA_返回一个数值的相反数的几种方式.

    一个方法接收一个int类型值,需要返回它的相反数. 如传入1,返回-1 传入-22,返回22 最简单的方式是return 0-number; 还有其他方式: public class Kata { p ...