codeforces 407D Largest Submatrix 3
codeforces 407D Largest Submatrix 3
题意
找出最大子矩阵,须满足矩阵内的元素互不相等。
题解
官方做法
http://codeforces.com/blog/entry/11333
- \(O(n^6)\)
- 枚举子矩阵,暴力check。
- \(O(n^4)\)
- 枚举上下边界,双指针。
- \(O(n^3log_2n)\)
- 假设当前上边界 \(up\), 下边界 \(down\),\(R_i\) 表示当 \(i\) 为左边界时,右边界最大是 \(R_i\)。
- 当 \(down->down+1\) 时,\(R_i\) 要么不变,要么减小。
- 减小的情况:\(a_{down+1, j}(i<=j<=R_i)\) 在矩阵 \((up, i, down, R_i)\) 中出现。
- 因此对于每个 \(a_{down+1, j}(i<=j<=R_i)\),我们需要寻找在矩阵 \((up, i, down, R_i)\) 中出现的,从左边最靠近 \(j\),和从右边最靠近 \(j\) 的两个位置。这个可以用set维护。
- \(O(n^3)\)
- 如何优化掉 \(O(n^3log_2n)\) 做法的 \(log_2n\) ?
- 从大到小枚举 \(up\)。当 \(up->up-1\) 时,\(O(n^2)\) 更新 \((up, 1, n, m)\) 中所有点的从左边最靠近,和从右边最靠近的两个位置。
区间dp做法
\(f_{i, l, r}\)表示下边界是 \(i\), 左右边界是 \(l, r\) 时,上边界的值。
\(f_{i, l, r}=max\{f_{i-1, l, r}, f_{i, l+1, r}, f_{i, l, r-1}, a_{i, l}与a_{1-i, r}的限制, a_{i, r}与a_{1-i, l}的限制\}\)

可以这样理解:\(f_{i, l, r}\) 需要维护A、B、C、D、E、F这六个块之间的关系,\(f_{i-1, l, r}\) 只维护了A、B、C之间的关系,\(f_{i, l+1, r}\) 只维护了B、C、E、F之间的关系,\(f_{i, l, r-1}\) 只维护了A、B、D、E之间的关系,剩下的还需维护A与F、C与D、D与F的关系。
// 代码实现可以省掉第一维。
代码
\(O(n^3log_2n)\)做法
T了 不知道有没有写错
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define rep(i, a, b) for(int i=(a); i<(b); i++)
#define sz(x) (int)x.size()
#define de(x) cout<< #x<<" = "<<x<<endl
#define dd(x) cout<< #x<<" = "<<x<<" "
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
const int N=404;
int n,m;
int a[N][N], R[N], cnt[N*N];
set<int> pos[N*N];
int solve() {
int ans=1;
rep(up,1,n+1) {
rep(i,0,N*N) pos[i].clear();
rep(i,0,m+1) R[i]=m;
rep(down,up,n+1) {
int r=0;
rep(i,1,m+1) {
while(r<m&&!cnt[a[down][r+1]]) {
++r;
++cnt[a[down][r]];
}
R[i]=min(R[i], r);
--cnt[a[down][i]];
}
rep(j,1,m+1) {
int c=a[down][j];
auto it1=pos[c].upper_bound(j);
auto it2=pos[c].lower_bound(j);
if(it1!=pos[c].begin()) {
--it1;
if(*it1<=j) R[*it1]=min(R[*it1], j-1);
}
if(it2!=pos[c].end()) {
if(j<=*it2) R[j]=min(R[j], *it2-1);
}
}
for(int i=m-1;i;--i) R[i]=min(R[i], R[i+1]);
rep(i,1,m+1) if(i<=R[i]) ans=max(ans, (down-up+1)*(R[i]-i+1));
rep(i,1,m+1) pos[a[down][i]].insert(i);
}
}
return ans;
}
int main() {
while(~scanf("%d%d",&n,&m)) {
///read
rep(i,1,n+1) rep(j,1,m+1) scanf("%d",&a[i][j]);
///solve
printf("%d\n",solve());
}
return 0;
}
\(O(n^3)\) 做法
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define rep(i, a, b) for(int i=(a); i<(b); i++)
#define sz(x) (int)x.size()
#define de(x) cout<< #x<<" = "<<x<<endl
#define dd(x) cout<< #x<<" = "<<x<<" "
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
const int N=404;
int n, m;
int a[N][N], p[N*N], l[N][N], r[N][N], R[N];
void Min(int &a, int b) {
if(a>b) a=b;
}
void Max(int &a, int b) {
if(a<b) a=b;
}
int solve() {
int ans=1;
rep(i,0,n+1) rep(j,0,m+1) l[i][j]=0, r[i][j]=m+1;
for(int u=n;u;--u) {
rep(i,1,m+1) p[a[u][i]]=0;
rep(i,1,m+1) l[u][i]=p[a[u][i]], p[a[u][i]]=i;
rep(i,1,m+1) p[a[u][i]]=m+1;
for(int i=m;i;--i) r[u][i]=p[a[u][i]], p[a[u][i]]=i;
memset(p,0,sizeof(p));
rep(i,1,m+1) {
p[a[u][i]]=i;
rep(v,u+1,n+1) Max(l[v][i], p[a[v][i]]);
}
rep(i,0,N*N) p[i]=m+1;
for(int i=m;i;--i) {
p[a[u][i]]=i;
rep(v,u+1,n+1) Min(r[v][i], p[a[v][i]]);
}
rep(i,1,m+1) R[i]=m+1;
rep(v,u,n+1) {
rep(i,1,m+1) {
Min(R[l[v][i]], i);
Min(R[i], r[v][i]);
}
for(int i=m-1;i;--i) Min(R[i], R[i+1]);
rep(i,1,m+1) {
Max(ans, (v-u+1)*(R[i]-i));
}
}
}
return ans;
}
int main() {
while(~scanf("%d%d",&n,&m)) {
///read
rep(i,1,n+1) rep(j,1,m+1) scanf("%d",&a[i][j]);
///solve
printf("%d\n",solve());
}
return 0;
}
区间dp做法
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define rep(i, a, b) for(int i=(a); i<(b); i++)
#define sz(x) (int)x.size()
#define de(x) cout<< #x<<" = "<<x<<endl
#define dd(x) cout<< #x<<" = "<<x<<" "
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
const int N=404;
int n,m;
int a[N][N], f[N][N], p[N][160004];
int main() {
while(~scanf("%d%d",&n,&m)) {
rep(i,1,n+1) rep(j,1,m+1) scanf("%d",&a[i][j]);
memset(f,0,sizeof(f));
memset(p,0,sizeof(p));
int ans=1;
rep(i,1,n+1) {
rep(len,1,m+1) {
for(int l=1, r=len;r<=m;++l, ++r) {
if(l==r) {
f[l][r]=max(f[l][r], p[l][a[i][l]]);
} else {
f[l][r]=max(f[l][r], max(f[l][r-1], f[l+1][r]));
f[l][r]=max(f[l][r], max(p[l][a[i][r]], p[r][a[i][l]]));
if(a[i][l]==a[i][r]) f[l][r]=i;
}
ans=max(ans, (i-f[l][r])*(r-l+1));
}
}
rep(j,1,m+1) p[j][a[i][j]]=i;
}
printf("%d\n",ans);
}
return 0;
}
codeforces 407D Largest Submatrix 3的更多相关文章
- Largest Submatrix(动态规划)
Largest Submatrix Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- POJ-3494 Largest Submatrix of All 1’s (单调栈)
Largest Submatrix of All 1’s Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 8551 Ac ...
- hdu 2870 Largest Submatrix(平面直方图的最大面积 变形)
Problem Description Now here is a matrix with letter 'a','b','c','w','x','y','z' and you can change ...
- Largest Submatrix of All 1’s
Given a m-by-n (0,1)-matrix, of all its submatrices of all 1’s which is the largest? By largest we m ...
- Largest Submatrix of All 1’s(思维+单调栈)
Given a m-by-n (0,1)-matrix, of all its submatrices of all 1's which is the largest? By largest we m ...
- POJ 3494 Largest Submatrix of All 1’s 单调队列||单调栈
POJ 3494 Largest Submatrix of All 1’s Description Given a m-by-n (0,1)-matrix, of all its submatrice ...
- POJ - 3494 Largest Submatrix of All 1’s 单调栈求最大子矩阵
Largest Submatrix of All 1’s Given a m-by-n (0,1)-matrix, of all its submatrices of all 1’s which is ...
- HDU 2870 Largest Submatrix (单调栈)
http://acm.hdu.edu.cn/showproblem.php? pid=2870 Largest Submatrix Time Limit: 2000/1000 MS (Java/Oth ...
- MINSUB - Largest Submatrix
MINSUB - Largest Submatrix no tags You are given an matrix M (consisting of nonnegative integers) a ...
随机推荐
- Maven 打包的时候报 Failed to execute goal org.codehaus.mojo:native2ascii-maven-plugin
错误信息: [ERROR] Failed to execute goal org.codehaus.mojo:native2ascii-maven-plugin:1.0-alpha-1:native2 ...
- weblogic升级之ddconverter
1. weblogic8.x 升到weblogic10时,需要升级ejb响应的描述符,否则会报错. BEA-011114 - Error: For EJB modules, deployment pl ...
- guava快速入门(三)
Guava工程包含了若干被Google的 Java项目广泛依赖 的核心库,例如:集合 [collections] .缓存 [caching] .原生类型支持 [primitives support] ...
- Python——爬虫学习1
爬虫了解一下 网络爬虫(Web crawler),是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本. Python的安装 本篇教程采用Python3 来写,所以你需要给你的电脑装上Python ...
- Java Calendar Date使用总结
Java Calendar Date使用总结 package cn.outofmemory.codes.Date; import java.util.Calendar; import java.uti ...
- linux的环境变量与文件查找
1. 环境变量 1.1 变量 shell 中的变量有不同类型,可参与运算,有作用域限定 变量的作用域即变量的有效范围(比如一个函数中.一个源文件中或者全局范围),在该范围内只能有一个同名变量.一旦离开 ...
- 使用 maven 创建 java web 工程
本文主要讲述使用 maven 命令行的形式来创建 java web 工程 开发环境 jdk 1.7 maven 3.5.0 spring 3.2 tomcat 7 eclipse Mars Rele ...
- Class.forName("com.mysql.jdbc.Driver")找不到类
解决方法: 如果是java项目,只需要引入mysql-connector-java-8.0.13.jar就可以运行java项目. 建的如果是web工程,需要把mysql-connector-java- ...
- python中字典,没键加键,有键操作其键对应的值,的思想
cars = ['鲁A32444', '鲁B12333', '京B8989M', '黑C49678', '黑C46555', '沪B25041', '黑C34567'] locations = {'沪 ...
- VC+++ 操作word
最近完成了一个使用VC++ 操作word生成扫描报告的功能,在这里将过程记录下来,开发环境为visual studio 2008 导入接口 首先在创建的MFC项目中引入word相关组件 右键点击 项目 ...