HDU-1423 最长公共上升子序列(LCIS)
问题描述:###
给定两个字符串x, y, 求它们公共子序列s, 满足si < sj ( 0 <= i < j < |s|).要求S的长度是所有条件序列中长度最长的.
做过最长公共子序列应该更容易明白了。
定义状态d[i][j]表示以a数组的前i个元素,b数组的前j个元素并且以b[j]为结尾的LCIS的长度。
首先:a[i] != b[j]时, d[i][j] = d[i-1][j]; 因为 d[i][j] 是以 b[j] 为结尾的LCIS,如果 d[i][j] > 0 那么就说明 a[1] .... a[i] 中必然有一个元素 a[k] 等于 b[j]。因为 a[k] != a[i],那么 a[i] 对 d[i][j] 没有贡献,于是我们不考虑它照样能得出 d[i][j] 的最优值。所以在 a[i] != b[j] 的情况下必然有 d[i][j] = d[i-1][j]。这一点参考LCS的处理方法。
当a[i]==b[j]时, 首先,这个等于起码保证了长度为1的LCIS。然后我们还需要去找一个最长的且能让b[j]接在其末尾的LCIS。之前最长的LCIS在哪呢?首先我们要去找的d数组的第一维必然是i-1。因为i已经拿去和b[j]配对去了,不能用了。第二维需要枚举 b[1] ... b[j-1]了,因为你不知道这里面哪个最长且哪个小于 b[j]。
状态转移方程:###
a[i] != b[j]: d[i][j]=d[i-1][j] ;
a[i] == b[j]: d[i][j]=max(d[i-1][k]) + 1 ; (1<= k <= j-1)
不难看到,这是一个时间复杂度为O(n^3)的DP,离平方还有一段距离。
但是,这个算法最关键的是,如果按照一个合理的递推顺序,max(d[i-1][k])的值我们可以在之前访问 d[i][k] 的时候通过维护更新一个max变量得到。怎么得到呢?首先递推的顺序必须是状态的第一维在外层循环,第二维在内层循环。也就是算好了 d[1][n2] 再去算 d[2][1]。 如果按照这个递推顺序我们可以在每次外层循环的开始加上令一个max变量为0,然后开始内层循环。当a[i]>b[j]的时候令max = d[i-1][j]。如果循环到了a[i] == b[j]的时候,则令 d[i][j] = max+1。 最后答案是 d[n1][1] ... d[n1][n2]的最大值。
举个例子
a={1, 4, 2, 5, -12} b ={5, -12, 1, 2, 4, 5}

if(a[i] == b[j])
d[i][j] = mx + 1;
else if(a[i] > b[j] && mx < d[i-1][j])
mx = d[i-1][j];
//只有当a[i] > b[j]时,才更新mx, 保证了所求序列是上升的。
仔细看表格会发现: 若d[i][j] > 0 的话,那么在数组a前i个元素中一定存在a[k]( 1 <= k <= i)等于b[j]. 否则说明前i个a元素中没有与b[j]相同的元素。
//O(n^3) DP 实现
#include<bits/stdc++.h>
using namespace std;
int m1,m2,a[505],b[505],maxx,top=1,flag;
int f[505][505];
int main()
{
cin>>m1;
for(int i=1;i<=m1;i++)
cin>>a[i];
cin>>m2;
for(int j=1;j<=m2;j++)
cin>>b[j];
for(int i=1;i<=m1;i++)
{
for(int j=1;j<=m2;j++)
{
f[i][j]=f[i-1][j];
if(a[i]==b[j])
{
int Max=0;
for(int k=1;k<=j-1;k++)
if(b[j]>b[k])
Max=max(Max,f[i-1][k]);
f[i][j]=Max+1;
}
}
}
cout<<f[m1][m2]<<endl;
maxx=f[m1][m2];
for(int i=1;i<=m1;i++)
{
for(int j=1;j<=m2;j++)
{
if(f[i][j]==top)
{
cout<<a[i]<<" ";
flag=1;
break;
}
}
if(flag==1)
{
top++; flag=0;
}
if(top>maxx)
break;
}
return 0;
}
//O(n^2) DP 实现
#include<iostream>
#include<cstdio>
#include<string.h>
#include<cstring>
#include<math.h>
using namespace std;
int n1, n2, t, k;
int a[505], b[505], d[505][505];
int dp()
{
int mx;
for(int i = 1; i <= n1; i++)
{
mx = 0;
for(int j = 1; j <= n2; j++)
{
d[i][j] = d[i-1][j];
if(a[i] > b[j] && mx < d[i-1][j]) mx = d[i-1][j];
else if(a[i] == b[j])
d[i][j] = mx + 1;
}
}
mx = 0;
for(int i = 1; i <= n2; i++)
{
if(d[n1][i] > mx)
mx = d[n1][i];
}
return mx;
}
int main()
{
cin >> t;
while(t--)
{
scanf("%d", &n1);
for(int i = 1; i <= n1; i++) scanf("%d", &a[i]);
scanf("%d", &n2);
for(int i = 1; i <= n2; i++) scanf("%d", &b[i]);
memset(d, 0, sizeof(d));
int ans = dp();
printf("%d\n", ans);
if(t) printf("\n");
}
return 0;
}
HDU-1423 最长公共上升子序列(LCIS)的更多相关文章
- hdu 1423 最长公共递增子序列 LCIS
最长公共上升子序列(LCIS)的O(n^2)算法 预备知识:动态规划的基本思想,LCS,LIS. 问题:字符串a,字符串b,求a和b的LCIS(最长公共上升子序列). 首先我们可以看到,这个问题具有相 ...
- hdu 1423 最长公共递增子序列
这题一开始把我给坑了,我还没知道LCIS的算法,然后就慢慢搞吧,幸运的是还真写出来了,只不过麻烦了一点. 我是将该题转换为多条线段相交,然后找出最多多少条不相交,并且其数值死递增的. 代码如下: #i ...
- 最长公共上升子序列(LCIS)
最长公共上升子序列慕名而知是两个字符串a,b的最长公共递增序列,不一定非得是连续的.刚开始看到的时候想的是先用求最长公共子序列,然后再从其中找到最长递增子序列,可是仔细想一想觉得这样有点不妥,然后从网 ...
- [ACM_动态规划] UVA 12511 Virus [最长公共递增子序列 LCIS 动态规划]
Virus We have a log file, which is a sequence of recorded events. Naturally, the timestamps are s ...
- HDU 4512 最长公共上升子序列
各种序列复习: (1)最长上升子序列. 1.这个问题用动态规划就很好解决了,设dp[i]是以第i个数字结尾的上升子序列的最长长度.那么方程可以是dp[i]=max(dp[j]+1).(j<i). ...
- 动态规划——最长公共上升子序列LCIS
问题 给定两个序列A和B,序列的子序列是指按照索引逐渐增加的顺序,从原序列中取出若干个数形成的一个子集,若子序列的数值大小是逐渐递增的则为上升子序列,若A和B取出的两个子序列A1和B1是相同的,则A1 ...
- HDU 1423 最长公共字串+上升子序列
http://acm.hdu.edu.cn/showproblem.php?pid=1423 在前一道题的基础上多了一次筛选 要选出一个最长的递增数列 lower_bound()函数很好用,二分搜索找 ...
- HDU1423 最长公共上升子序列LCIS
Problem Description This is a problem from ZOJ 2432.To make it easyer,you just need output the lengt ...
- hdu 1423 最长上升递增子序列
#include <iostream> #include <cstdio> #include <cstring> using namespace std; ; in ...
- LCIS最长公共上升子序列
最长公共上升子序列LCIS,如字面意思,就是在对于两个数列A和B的最长的单调递增的公共子序列. 这道题目是LCS和LIS的综合. 在LIS中,我们通过两重循环枚举当序列以当前位置为结尾时,A序列中当前 ...
随机推荐
- SQL Server TVPs 批量插入数据
在SQL Server 中插入一条数据使用Insert语句,但是如果想要批量插入一堆数据的话,循环使用Insert不仅效率低,而且会导致SQL一系统性能问题.下面介绍SQL Server支持的两种批量 ...
- 简单迷宫算法(递归与非递归C++实现)
假定迷宫如下:1代表墙,0代表道路,起点在(1,1),终点(11,9)(PS:下标从0开始计算). 现在寻求一条路径能从起点到达终点(非最短). 有两种解法:递归与非递归. 递归算法思路: 要用递归, ...
- Intelij idea 版本控制工具窗口
1. 在菜单栏vcs中启用版本控制 2. 然后调出工具窗口,view-tools window-version control
- centos7.2下部署 python3
安装Python3 1.环境准备 yum -y install zlib-devel bzip2-devel openssl-devel ncurses-devel sqlite-devel read ...
- git下载/上传文件提示:git did not exit cleanly
问题:git操作下载/上传文件,提示信息如下 TortoiseGit-git did not exit cleanly (exit code 1) TortoiseGit-git did not ex ...
- 自定义Maven Archetype模板
1. 目的 自定义Maven Archetype模板目的为了把自己辛苦搭建的基础项目可以作为模板, 方便以后可以快速的创建类似项目,免去每次搭建的麻烦 2.把基础项目打包生成archetype项目 在 ...
- 了解vue里的Runtime Only和Runtime+Compiler
转自:了解vue里的Runtime Only和Runtime+Compiler 扩展文章:Vue 2.0如何仅使用Runtime-only Build构建项目? 可以看到有两种版本: Runtime ...
- 树形结构模型Django-MPTT
什么是django-mptt? django-mptt是一个可复用的django app, 旨在让你自己的django项目模型使用MPTT更加简单.它负责将数据库表作为树型结构管理的详细信息,并提供用 ...
- static 关键字 静态成员变量及静态成员函数
static类成员 类成员类似于C语言的全局变量,但是与全局变量又有所不同,例如,全局变量是可以被任何的用户代码所修改,而且全局变量破坏了对象的封装性. 使用类的 static 成员的优点 使用 st ...
- pythonのdjango 在控制台用log打印操作日志
在Django项目的settings.py文件中,在最后复制粘贴如下代码: LOGGING = { 'version': 1, 'disable_existing_loggers': False, ' ...