bounding box的简单理解
1. 小吐槽
OverFeat是我看的第一篇深度学习目标检测paper,因为它是第一次用深度学习来做定位、目标检测问题。可是,很难懂。。。那个bounding box写得也太简单了吧。虽然,很努力地想理解还找了很多博客、论文什么。后来,还是看RCNN,总算有点理解。
2. 对bounding box的误解
我一直以为卷积网络最后可以得到四个值:分别表示学习到的bounding box坐标,然后回归的目标是将这四个坐标与ground truth的四个坐标进行比较回归。其实不是这样的!正文如下
3. bounding box
(1) 一开始会有预测的边框值输入。原来的分类问题只是输入一张图,但是现在对于输入的图还有它在原图中的位置信息。比如滑动窗口、RCNN中selective search给出的区域提案等,产生用于分类判断的区域$P$
(2) 输入的图会通过卷积网络学习提取出特征向量$\phi_5(P)$
(3) 目标检测的一个目标是希望最后的bounding box(P)和ground truth(G)一致,但是实现方法并不是学习坐标,而是学习变形比例:包括两个部分,一个是对边框(x, y)进行移动,一个是对边框大小(w, h)进行缩放
$\hat{G}_x = P_x + d_x\\ \hat{G}_y = P_y + d_y\\ \hat{G}_w = P_w * d_w\\ G_h'=P_h * d_h$
$\hat{G}_x = P_wd_x(P) + P_x\\ \hat{G}_y = P_hd_y(P) + P_y\\ \hat{G}_w = P_wexp(d_w(P))\\ \hat{G}_h = P_hexp(d_h(P))$ 所以目标是要计算得到$d_x(P),d_y(P),d_w(P),d_h(P)$四个参数
$d_*(P) = w_*^T\phi_5(P)$ 目标变成学习$w_*^T$参数
$w_*=\underset{argmin}{\hat{w}_*}\sum_i^N(t^i_*-\hat{w}^T_*\phi_5(P^i))^2+\lambda||\hat{w}_*||^2$ 其中$t_*^i$和上面定义的转换关系中的$d_*^i$是对应的,也就是 $t_x=(G_x-P_x)/P_w\\ t_y = (G_y-P_y)/P_h\\t_w=log(G_w/P_w)\\t_h=log(G_h/P_h)$
回归问题 |
4. 总结
不懂的问题不要一直在一个地方一直想,还是要多去看看其它相关的。一个看不懂就再看一个。有时主观的下意识的理解会有偏差,然后就很难去接受新的,没法跳出误区
如果有哪里写得不对,还请多多指教,有些细节部分,还不是完全确定 ̄□ ̄||
bounding box的简单理解的更多相关文章
- 3D空间中的AABB(轴向平行包围盒, Aixe align bounding box)的求法
引言 在前面的一篇文章中讲述了怎样通过模型的顶点来求的模型的包围球,而且还讲述了基本包围体除了包围球之外,还有AABB包围盒.在这一章,将讲述怎样依据模型的坐标求得它的AABB盒. 表示方法 AABB ...
- Latex 中插入图片no bounding box 解决方案
在windows下,用latex插入格式为jpg,png等图片会出现no bounding box 的编译错误,此时有两个解决办法: 1.将图片转换为eps格式的图片 \usepackage{grap ...
- 第二十六节,滑动窗口和 Bounding Box 预测
上节,我们学习了如何通过卷积网络实现滑动窗口对象检测算法,但效率很低.这节我们讲讲如何在卷积层上应用这个算法. 为了构建滑动窗口的卷积应用,首先要知道如何把神经网络的全连接层转化成卷积层.我们先讲解这 ...
- elasticsearch Geo Bounding Box Query
Geo Bounding Box Query 一种查询,允许根据一个点位置过滤命中,使用一个边界框.假设以下索引文档: PUT /my_locations { "mappings" ...
- Bounding Box回归
简介 Bounding Box非常重要,在rcnn, fast rcnn, faster rcnn, yolo, r-fcn, ssd,到今年cvpr最新的yolo9000都会用到. 先看图 对于上图 ...
- 目标检测中的bounding box regression
目标检测中的bounding box regression 理解:与传统算法的最大不同就是并不是去滑窗检测,而是生成了一些候选区域与GT做回归.
- Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression
Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression 2019-05-20 19:3 ...
- 【54】目标检测之Bounding Box预测
Bounding Box预测(Bounding box predictions) 在上一篇笔记中,你们学到了滑动窗口法的卷积实现,这个算法效率更高,但仍然存在问题,不能输出最精准的边界框.在这个笔记中 ...
- git的简单理解及基础操作命令
前端小白一枚,最近开始使用git,于是花了2天看了廖雪峰的git教程(偏实践,对于学习git的基础操作很有帮助哦),也在看<git版本控制管理>这本书(偏理论,内容完善,很不错),针对所学 ...
随机推荐
- RabbitMQ消息队列
RabbitMQ消息队列 !!! 注意,保证服务器的内存足够,磁盘足够,以及删除/etc/hosts中没有用的dns解析 # 优点,能够保证消息数据持久化,不丢失,支持高并发 安装学习rabbitm ...
- 使用FastJson进行对象和JSON转换属性命名规则为下划线和驼峰的问题
public class AliPayParam { @JSONField(name="out_trade_no") private String outTradeNo; @JSO ...
- dataframe常用处理
获取列名:data.columns.values.tolist() 复制列: out['serial_number'] = out['2']这样就是新增了一列,复制了‘2’这一列,然后再del out ...
- 《java核心技术36讲》学习笔记-------杨晓峰(极客时间)
非常荣幸作为晓峰哥的同事,之前就看过这篇文章,重写读一遍,再学习学习. 一.开篇词 初级.中级:java和计算机科学基础.开源框架的使用:高级.专家:java io/nio.并发.虚拟机.底层源码.分 ...
- LuoguP4233 射命丸文的笔记
题目描述 求所有\(n\)个点带标号强连通竞赛图中哈密顿回路数量的平均值. 题解 因为要求平均数,所以我们可以把分母和分子单开来算. \(n\)个点的所有竞赛图的所有哈密顿回路个数是可以求出来的,就是 ...
- Docke--利用 commit 理解构建镜像
Docker 利用commit理解构建镜像 镜像是容器的基础,每次执行 docker run 的时候都会指定哪个镜像作为容器运行的基础.当我们使用Docker Hub的镜像无法满足我们的需求时,我们就 ...
- windows下提权基础
拿到webshell很多时候代表渗透的开始,下面带来windows提权基础 环境:虚拟机 win7系统 首先:查看权限whoami 我们知道windows的高权限应该是administrator和sy ...
- babel7-按需加载polyfill
babel7 babel7发布了. 在升级到 Babel 7 时需要注意几个重大变化: 移除对 Node.js 6 之前版本的支持: 使用带有作用域的 @babel 命名空间,以防止与官方 Babel ...
- GWAS基因芯片数据预处理:质量控制(quality control)
一.数据为什么要做质量控制 比起表观学研究,GWAS研究很少有引起偏差的来源,一般来说,一个人的基因型终其一生几乎不会改变的,因此很少存在同时影响表型又影响基因型的变异.但即便这样,我们在做GWAS时 ...
- 08--STL关联容器(set/multiset)
一:set/multiset的简介 set是一个集合容器,其中所包含的元素是唯一的,集合中的元素按一定的顺序排列.元素插入过程是按排序规则插入,所以不能指定插入位置. set采用红黑树变体的数据结构实 ...