bounding box的简单理解
1. 小吐槽
OverFeat是我看的第一篇深度学习目标检测paper,因为它是第一次用深度学习来做定位、目标检测问题。可是,很难懂。。。那个bounding box写得也太简单了吧。虽然,很努力地想理解还找了很多博客、论文什么。后来,还是看RCNN,总算有点理解。
2. 对bounding box的误解
我一直以为卷积网络最后可以得到四个值:分别表示学习到的bounding box坐标,然后回归的目标是将这四个坐标与ground truth的四个坐标进行比较回归。其实不是这样的!正文如下
3. bounding box
(1) 一开始会有预测的边框值输入。原来的分类问题只是输入一张图,但是现在对于输入的图还有它在原图中的位置信息。比如滑动窗口、RCNN中selective search给出的区域提案等,产生用于分类判断的区域$P$
(2) 输入的图会通过卷积网络学习提取出特征向量$\phi_5(P)$
(3) 目标检测的一个目标是希望最后的bounding box(P)和ground truth(G)一致,但是实现方法并不是学习坐标,而是学习变形比例:包括两个部分,一个是对边框(x, y)进行移动,一个是对边框大小(w, h)进行缩放
$\hat{G}_x = P_x + d_x\\ \hat{G}_y = P_y + d_y\\ \hat{G}_w = P_w * d_w\\ G_h'=P_h * d_h$
$\hat{G}_x = P_wd_x(P) + P_x\\ \hat{G}_y = P_hd_y(P) + P_y\\ \hat{G}_w = P_wexp(d_w(P))\\ \hat{G}_h = P_hexp(d_h(P))$ 所以目标是要计算得到$d_x(P),d_y(P),d_w(P),d_h(P)$四个参数
$d_*(P) = w_*^T\phi_5(P)$ 目标变成学习$w_*^T$参数
$w_*=\underset{argmin}{\hat{w}_*}\sum_i^N(t^i_*-\hat{w}^T_*\phi_5(P^i))^2+\lambda||\hat{w}_*||^2$ 其中$t_*^i$和上面定义的转换关系中的$d_*^i$是对应的,也就是 $t_x=(G_x-P_x)/P_w\\ t_y = (G_y-P_y)/P_h\\t_w=log(G_w/P_w)\\t_h=log(G_h/P_h)$
回归问题 |
4. 总结
不懂的问题不要一直在一个地方一直想,还是要多去看看其它相关的。一个看不懂就再看一个。有时主观的下意识的理解会有偏差,然后就很难去接受新的,没法跳出误区
如果有哪里写得不对,还请多多指教,有些细节部分,还不是完全确定 ̄□ ̄||
bounding box的简单理解的更多相关文章
- 3D空间中的AABB(轴向平行包围盒, Aixe align bounding box)的求法
引言 在前面的一篇文章中讲述了怎样通过模型的顶点来求的模型的包围球,而且还讲述了基本包围体除了包围球之外,还有AABB包围盒.在这一章,将讲述怎样依据模型的坐标求得它的AABB盒. 表示方法 AABB ...
- Latex 中插入图片no bounding box 解决方案
在windows下,用latex插入格式为jpg,png等图片会出现no bounding box 的编译错误,此时有两个解决办法: 1.将图片转换为eps格式的图片 \usepackage{grap ...
- 第二十六节,滑动窗口和 Bounding Box 预测
上节,我们学习了如何通过卷积网络实现滑动窗口对象检测算法,但效率很低.这节我们讲讲如何在卷积层上应用这个算法. 为了构建滑动窗口的卷积应用,首先要知道如何把神经网络的全连接层转化成卷积层.我们先讲解这 ...
- elasticsearch Geo Bounding Box Query
Geo Bounding Box Query 一种查询,允许根据一个点位置过滤命中,使用一个边界框.假设以下索引文档: PUT /my_locations { "mappings" ...
- Bounding Box回归
简介 Bounding Box非常重要,在rcnn, fast rcnn, faster rcnn, yolo, r-fcn, ssd,到今年cvpr最新的yolo9000都会用到. 先看图 对于上图 ...
- 目标检测中的bounding box regression
目标检测中的bounding box regression 理解:与传统算法的最大不同就是并不是去滑窗检测,而是生成了一些候选区域与GT做回归.
- Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression
Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression 2019-05-20 19:3 ...
- 【54】目标检测之Bounding Box预测
Bounding Box预测(Bounding box predictions) 在上一篇笔记中,你们学到了滑动窗口法的卷积实现,这个算法效率更高,但仍然存在问题,不能输出最精准的边界框.在这个笔记中 ...
- git的简单理解及基础操作命令
前端小白一枚,最近开始使用git,于是花了2天看了廖雪峰的git教程(偏实践,对于学习git的基础操作很有帮助哦),也在看<git版本控制管理>这本书(偏理论,内容完善,很不错),针对所学 ...
随机推荐
- linux 上 mysql 的使用
1.登录mysql 第一次登录 没有密码 可以直接输入 mysql 有密码可以使用 mysql -u root -p 回车会提示需要输入密码 -u 用户名 -p 密码 这个mysql文件在/us ...
- stm32矩阵键盘扫描数据通过USB发送
Keyboard.c #include "keyboard.h"#include "my_usb.h"#include " ...
- MySQL性能优化神器—explain
一.explain是什么? 简单来讲就是官方给的一个优化工具,直接在你的SQL语句前加上explain,执行整条语句,之后你就可以根据执行结果优化你的SQL啦,废话不多说,直接刚实例 测试实例 1.创 ...
- axios拦截http拦截
一,判断登录页面 const routes = [ { path: '/', name: '/', component: Index }, { path: '/repository', name: ' ...
- POJ1847 Tram
Tram Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 20274 Accepted: 7553 Description ...
- spring多模块项目手动整合
一.分别创建parent entity dao service controller web等模块项目,如图: 二.parent项目添加依赖 <!-- 集中定义依赖版本号 --> < ...
- pip模块
pip模块 Usage: pip <command> [options] Commands: install Install packages. download Download pac ...
- 转载:原来JavaScript的闭包是这么回事!
相关阅读:https://www.itcodemonkey.com/article/8565.html
- Linux-文件管理
文件管理 创建.复制.删除.移动.查看.编辑.压缩.查找 Linux目录结构 Windows: 以多根的方式组织文件 C:\ D:\ E:\Linux: 以单根的方式组织文件 / /目录结构: FSH ...
- 20165223《网络对抗技术》Exp4 恶意代码分析
目录 -- 恶意代码分析 恶意代码分析说明 实验任务目标 实验内容概述 schtasks命令使用 实验内容 系统运行监控 恶意软件分析 静态分析 virscan分析和VirusTotal分析 PEiD ...