一、动图演

二、思路分析

基数排序第i趟将待排数组里的每个数的i位数放到tempj(j=1-10)队列中,然后再从这十个队列中取出数据,重新放到原数组里,直到i大于待排数的最大位数。

1.数组里的数最大位数是n位,就需要排n趟,例如数组里最大的数是3位数,则需要排3趟。

2.若数组里共有m个数,则需要十个长度为m的数组tempj(j=0-9)用来暂存i位上数为j的数,例如,第1趟,各位数为0的会被分配到temp0数组里,各位数为1的会被分配到temp1数组里......

3.分配结束后,再依次从tempj数组中取出数据,遵循先进先进原则,例如对数组{1,11,2,44,4},进行第1趟分配后,temp1={1,11},temp2={2},temp4={44,4},依次取出元素后{1,11,2,44,4},第一趟结束

4.循环到n趟后结束,排序完成

根据思路分析,每一趟的执行流程如下图所示:

通过基数排序对数组{53, 3, 542, 748, 14, 214, 154, 63, 616}:

三、负杂度分析

1.  时间复杂度:

每一次关键字的桶分配都需要O(n)的时间复杂度,而且分配之后得到新的关键字序列又需要O(n)的时间复杂度。

假如待排数据可以分为d个关键字,则基数排序的时间复杂度将是O(d*2n) ,当然d要远远小于n,因此基本上还是线性级别的。

系数2可以省略,且无论数组是否有序,都需要从个位排到最大位数,所以时间复杂度始终为O(d*n) 。其中,n是数组长度,d是最大位数。

2.  空间复杂度: 

  基数排序的空间复杂度为O(n+k),其中k为桶的数量,需要分配n个数。

 四、Java 代码如下

import java.util.Arrays;
public class Main {
public static void main(String[] args) {
int[] arr = new int[]{10,6,3,8,33,27,66,9,7,88};
radixSort(arr);
} private static void radixSort(int[] arr) {
//求出待排数的最大数
int maxLength=0;
for (int i = 0; i < arr.length; i++) {
if(maxLength<arr[i])
maxLength = arr[i];
}
//根据最大数求最大长度
maxLength = (maxLength+"").length(); //用于暂存数据的数组
int[][] temp = new int[10][arr.length];
//用于记录temp数组中每个桶内存的数据的数量
int[] counts = new int[10];
//用于记录每个数的i位数
int num = 0;
//用于取的元素需要放的位置
int index = 0;
//根据最大长度决定排序的次数
for (int i = 0,n=1; i < maxLength; i++,n*=10) {
for (int j = 0; j < arr.length; j++) {
num = arr[j]/n%10;
temp[num][counts[num]] = arr[j];
counts[num]++;
} //从temp中取元素重新放到arr数组中
for (int j = 0; j < counts.length; j++) {
for (int j2 = 0; j2 < counts[j]; j2++) {
arr[index] = temp[j][j2];
index++;
}
counts[j]=0;
}
index=0;
}
System.out.println(Arrays.toString(arr));
}
}

八大排序算法——基数排序(动图演示 思路分析 实例代码java 复杂度分析)的更多相关文章

  1. 八大排序算法详解(动图演示 思路分析 实例代码java 复杂度分析 适用场景)

    一.分类 1.内部排序和外部排序 内部排序:待排序记录存放在计算机随机存储器中(说简单点,就是内存)进行的排序过程. 外部排序:待排序记录的数量很大,以致于内存不能一次容纳全部记录,所以在排序过程中需 ...

  2. 八大排序算法——希尔(shell)排序(动图演示 思路分析 实例代码java 复杂度分析)

    一.动图演示 二.思路分析 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序:随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止. 简单插 ...

  3. 八大排序算法——插入排序(动图演示 思路分析 实例代码java 复杂度分析)

    一.动图演示 二.思路分析 例如从小到大排序: 1.  从第二位开始遍历, 2.  当前数(第一趟是第二位数)与前面的数依次比较,如果前面的数大于当前数,则将这个数放在当前数的位置上,当前数的下标-1 ...

  4. 八大排序算法——堆排序(动图演示 思路分析 实例代码java 复杂度分析)

    一.动图演示 二.思路分析 先来了解下堆的相关概念:堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆:或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆.如 ...

  5. 八大排序算法——归并排序(动图演示 思路分析 实例代码java 复杂度分析)

    一.动图演示 二.思路分析 归并排序就是递归得将原始数组递归对半分隔,直到不能再分(只剩下一个元素)后,开始从最小的数组向上归并排序 1.  向上归并排序的时候,需要一个暂存数组用来排序, 2.  将 ...

  6. 八大排序算法——快速排序(动图演示 思路分析 实例代码Java 复杂度分析)

    一.动图演示 二.思路分析 快速排序的思想就是,选一个数作为基数(这里我选的是第一个数),大于这个基数的放到右边,小于这个基数的放到左边,等于这个基数的数可以放到左边或右边,看自己习惯,这里我是放到了 ...

  7. 八大排序算法——冒泡排序(动图演示 思路分析 实例代码java 复杂度分析)

    一.动图演示 二.思路分析 1.  相邻两个数两两相比,n[i]跟n[j+1]比,如果n[i]>n[j+1],则将连个数进行交换, 2.  j++, 重复以上步骤,第一趟结束后,最大数就会被确定 ...

  8. 八大排序算法——选择排序(动图演示 思路分析 实例代码Java 复杂度分析)

    一.动图演示 二.思路分析 1.  第一个跟后面的所有数相比,如果小于(或小于)第一个数的时候,暂存较小数的下标,第一趟结束后,将第一个数,与暂存的那个最小数进行交换,第一个数就是最小(或最大的数) ...

  9. 转发自:一像素 十大经典排序算法(动图演示)原链接:https://www.cnblogs.com/onepixel/articles/7674659.html 个人收藏所用 侵删

    原链接:https://www.cnblogs.com/onepixel/articles/7674659.html     个人收藏所用   侵删 0.算法概述 0.1 算法分类 十种常见排序算法可 ...

随机推荐

  1. dynamic的使用

    一.在没有dynamic之前,我们想要获取返回object对象里的属性的值时,使用反射的方法来获取该对象的属性值. class Program { static void Main(string[] ...

  2. 《CSS世界》读书笔记(十六)

    <!-- <CSS世界>张鑫旭著 --> line-height与“垂直居中” line-height 可以让单行或多行元素近似垂直居中,原因在于 CSS 中“行距的上下等分机 ...

  3. vue webpack 引入iview iview内部文件报语法错误

    错误如下: 是因为 es6 语法没有成功转化 因为 我的项目是别人做好的已经部署的项目 ,但是用到的是es2015  配置es2015并不起作用 是因为es2015已经过期了 安装的时候回有类似下面的 ...

  4. newJob_newFell

    雄关漫道真如铁,而今迈步从头越. 不求闻达于诸侯,但求无愧于初心.

  5. flutter -webview 报错 err_cleartext_not_permitted

    文件 android\app\src\main\AndroidManifest.xml <manifest xmlns:android="http://schemas.android. ...

  6. Python下关于RSA解密模块的使用

    最近筹备一场CTF比赛发现了一道关于RSA解密的题如下: #小明得到了一个 RSA 加密信息,你能帮他解开吗? n = 4106906565495961459775020773869808579876 ...

  7. BUTXO详解

    在比原链中,每个交易消耗之前交易生成的BUTXO 然后生成新的 BUTXO,账户的余额即所有属于该地址的未花费 BUTXO 集合,BTM 的全局状态即当前所有未花费的BUTXO 集合.我们用一个具体的 ...

  8. Redis集群 - Sentinel与RAFT算法

    引入   在主从模型中讲到 一旦Master宕机失效,需要手动将Slave角色提升为Master,否则这个子集群将不可用.   这个缺陷使得系统可用性大大降低.因此Redis专门提供了一个哨兵机制来实 ...

  9. 我的第一篇博客。(JavaScript的声明和数据类型的一些笔记)

    这是我的第一篇博客,务必请大家多多关照. 下面是前端js的变量和数据类型的一些笔记,不是很全请多多包涵. 1.变量 变量的声明 var 变量名 变量这个容器中放的是数据 变量的赋值 变量名 = 数据 ...

  10. dp入门之01背包问题

    ...通过暴力手推得到的一点点感觉 动态规划是相对于贪心算法的一种取得最优解的算法,通过对每一步的取舍判断从 0 推到所拥有的第 n 件物品,每次判断可以列写出状态转移方程,通过记忆化相对暴力地取得最 ...