题目链接

题意:环形的一群石子,每次可以选择相邻的两堆合并,分数为新得到的一堆石子,求将这片石子合并成一堆的最大和最小分数

输入:第一行一个正整数n,其后n个数代表每堆石子的个数

分析:第一次写的时候我想当然的写的状态转移方程是dpx[l][r]=max(dpx[l+1][r]+a[l][r],dpx[l][r-1]+a[l][r]);(dpx是指这个dp数组用来求最大分数),想的是左右逼近,但是我这个状态转移方程有个非常致命的缺点,那就是合并的两堆石头,一定有一堆是没经过合并的,这很明显无法代表全部情况,万一正解就是左边一半合并成一起,右边一半合并成一起,然后左右合并,我的算法就肯定得不到答案。

搜了搜正解,正解状态转移方程是dp1[l][r]=max(dp1[l][r],dp1[l][k]+dp1[k+1][r]+d(l,r));通过枚举一个k来实现将左右两堆合并在一起的情况

然后再注意题目中的石子是成环的,所以需要用2n的数组来存储,最后遍历也是同样。

另外dp[i][i]这种单一数组的分数是0,所以dp2数组决不能一开始fill成inf,只能在一个具体的定义下设为inf,具体看代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf=<<;
const int maxn=;
const double pi=acos(-);
const int mod=1e9+;
int a[maxn],sum[maxn];
int dp1[maxn][maxn],dp2[maxn][maxn];
int d(int x,int y){
return sum[y]-sum[x-];
}
int main(){
int n;scanf("%d",&n);
//fill((int *)dp2,(int *)dp2+maxn*maxn,inf);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
a[i+n]=a[i];
sum[i]=sum[i-]+a[i];
}
for(int i=n+;i<=*n;i++){
sum[i]=sum[i-]+a[i];
}
for(int len=;len<=n;len++){
for(int l=;(l+len-)<=*n;l++){
int r=l+len-;
dp2[l][r]=inf;
for(int k=l;k<r;k++){//注意k是比r小的,因为是左边是l到k,右边是k+1-r
dp1[l][r]=max(dp1[l][r],dp1[l][k]+dp1[k+][r]+d(l,r));
dp2[l][r]=min(dp2[l][r],dp2[l][k]+dp2[k+][r]+d(l,r));
}
}
}
int mx=,mn=inf;
for(int i=;i<=n;i++){
mx=max(mx,dp1[i][i+n-]);
mn=min(mn,dp2[i][i+n-]);
}
cout<<mn<<endl<<mx<<endl;
return ;
}

区间DP经典 石子合并的更多相关文章

  1. nyoj737区间dp(石子合并)

    石子合并(一) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述     有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的 ...

  2. hihocoder1636 Pangu and Stones(区间DP(石子合并变形))

    题目链接:http://hihocoder.com/problemset/problem/1636 题目大意:有n堆石头,每次只能合并l~r堆,每次合并的花费是要合并的石子的重量,问你合并n堆石子的最 ...

  3. 区间dp之 "石子合并"系列(未完结)

    A. 石子合并<1> 内存限制:128 MiB 时间限制:1000 ms 标准输入输出 题目类型:传统评测 方式:文本比较   题目描述 有N堆石子排成一排(n<=100),现要将石 ...

  4. 整数划分——区间dp(石子合并)

    这不是将一个数以一来划分,而是把一个整数以位来划分 题目描述 如何把一个正整数N(N长度<20)划分为M(M>1)个部分,使这M个部分的乘积最大.N.M从键盘输入,输出最大值及一种划分方式 ...

  5. 51Nod 1021 石子归并(区间dp经典入门)

    题意: N堆石子摆成一条线.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的代价.计算将N堆石子合并成一堆的最小代价. n<=100 思 ...

  6. 2017北京网络赛 J Pangu and Stones 区间DP(石子归并)

    #1636 : Pangu and Stones 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 In Chinese mythology, Pangu is the fi ...

  7. POJ 3280 Cheapest Palindrome (区间DP) 经典

    <题目链接> 题目大意: 一个由小写字母组成的字符串,给出字符的种类,以及字符串的长度,再给出添加每个字符和删除每个字符的代价,问你要使这个字符串变成回文串的最小代价. 解题分析: 一道区 ...

  8. POJ 3280 Cheapest Palindrome ( 区间DP && 经典模型 )

    题意 : 给出一个由 n 中字母组成的长度为 m 的串,给出 n 种字母添加和删除花费的代价,求让给出的串变成回文串的代价. 分析 :  原始模型 ==> 题意和本题差不多,有添和删但是并无代价 ...

  9. tyvj 1055 沙子合并 区间dp经典模型,石子合并

    P1055 沙子合并 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述     设有N堆沙子排成一排,其编号为1,2,3,…,N(N<=300).每堆沙子 ...

随机推荐

  1. 删除打开方式里的wine

    title: "删除打开方式里的wine" date: 2018-05-27T13:54:28+08:00 tags: ["wine"] categories: ...

  2. Django框架详细介绍---Form表单

    一.概述 在HTML页面中,利用form表单向后端提交数据时,需要编写input等输入标签并用form标签包裹起来,与此同时,在很多应用场景之下需要对用户输入的数据校验,例如注册登录页面中,校验用户注 ...

  3. openwrt路由器进入安全模式

    openwrt路由器型号:WNDR3800 一.实验背景 在pc机上通过xshell软件登录openwrt路由器,pc机通过网线与openwrt路由器的LAN接口相连.openwrt路由器自带两块无线 ...

  4. html5 旋转导航练习

    ul{    list-style: none;    font-size: 24px;    font-weight: bold; }a{    text-decoration: none;}li{ ...

  5. 内存泄漏(I)

    Block 解决内存泄漏 使用 weakSelf 进行解决 NSTimer 的内存泄漏与解决方案 内存泄漏

  6. C#发送内置图片的html格式邮件的代码

    将写内容过程经常用的内容段备份一次,下面的内容是关于C#发送内置图片的html格式邮件的内容,应该对码农们也有用处.MailMessage m = new MailMessage();m.Subjec ...

  7. nodejs基础快速上手

    node 快速了解 hello node.js console.log("hello Node.js"); let http = require("http") ...

  8. windows eclipse直接访问远程linux hadoop开发环境配置(符合实际开发的做法)

    CDH 5.x搭建请参考CentOS 7离线安装CDH 5.16.1完全指南(含各种错误处理). 如果使用的是cloudera quickstart vm,则只能在linux服务器中使用eclipse ...

  9. UML类图新手入门级介绍(转)

    首先,看动物矩形框,它代表一个类(Class).类图分三层,第一层显示类的名称,如果是抽象类,则就用斜体显示.第二层是类的特性,通常就是字段和属性.第三层是类的操作,通常是方法或行为.前面的符号,+ ...

  10. ojdbc包加入本地仓库

    mvn install:install-file -DgroupId=com.oracle -DartifactId=ojdbc6 -Dversion=11.2.0 -Dpackaging=jar - ...