MapReduce-TextInputFormat 切片机制
MapReduce 默认使用 TextInputFormat 进行切片,其机制如下
(1)简单地按照文件的内容长度进行切片
(2)切片大小,默认等于Block大小,可单独设置
(3)切片时不考虑数据集整体,而是逐个针对每一个文件单独切片 例如:
(1)输入数据有两个文件:
filel.txt 320M
file2.txt 10M
(2)经过 FilelnputFormat(TextInputFormat为其实现类)的切片机制运算后,形成的切片信息如下:
filel.txt.splitl--0~128
filel.txt.split2--128~256
filel.txt.split3--256~320
file2.txt.splitl--0~10M
测试读取数据的方式
输入数据(中间为空格,末尾为换行符)
map 阶段的 k-v
可以看出 k 为偏移量,v 为一行的值,即 TextInputFormat 按行读取
以 WordCount 为例进行测试,测试切片数
测试数据,三个相同的文件
测试代码
package com.mapreduce.wordcount; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.log4j.BasicConfigurator; import java.io.IOException;
import java.util.StringTokenizer; public class WordCount { static {
try {
// 设置 HADOOP_HOME 环境变量
System.setProperty("hadoop.home.dir", "D:/DevelopTools/hadoop-2.9.2/");
// 日志初始化
BasicConfigurator.configure();
// 加载库文件
System.load("D:/DevelopTools/hadoop-2.9.2/bin/hadoop.dll");
} catch (UnsatisfiedLinkError e) {
System.err.println("Native code library failed to load.\n" + e);
System.exit(1);
}
} public static void main(String[] args) throws Exception {
args = new String[]{"D:\\tmp\\input2", "D:\\tmp\\456"};
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); // 设置 InputFormat,默认为 TextInputFormat.class,这里显式设置下,后面设置切片大小
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat.setMinInputSplitSize(job, 1);
TextInputFormat.setMaxInputSplitSize(job, 1024 * 1024 * 128); FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
} public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text(); @Override
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
// 查看 k-v
System.out.println(key + "\t" + value);
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
} public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable(); @Override
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
}
MapReduce-TextInputFormat 切片机制的更多相关文章
- Hadoop(14)-MapReduce框架原理-切片机制
1.FileInputFormat切片机制 切片机制 比如一个文件夹下有5个小文件,切片时会切5个片,而不是一个片 案例分析 2.FileInputFormat切片大小的参数配置 源码中计算切片大小的 ...
- MapReduce-CombineTextInputFormat 切片机制
MapReduce 框架默认的 TextInputFormat 切片机制是对任务按文件规划切片,如果有大量小文件,就会产生大量的 MapTask,处理小文件效率非常低. CombineTextInpu ...
- 【大数据】MapTask并行度和切片机制
一. MapTask并行度决定机制 maptask的并行度决定map阶段的任务处理并发度,进而影响到整个job的处理速度 那么,mapTask并行实例是否越多越好呢?其并行度又是如何决定呢? 1.1 ...
- MapReduce中作业调度机制
MapReduce中作业调度机制主要有3种: 1.先入先出FIFO Hadoop 中默认的调度器,它先按照作业的优先级高低,再按照到达时间的先后选择被执行的作业. 2.公平调度器(相当于时间 ...
- 王家林的“云计算分布式大数据Hadoop实战高手之路---从零开始”的第十一讲Hadoop图文训练课程:MapReduce的原理机制和流程图剖析
这一讲我们主要剖析MapReduce的原理机制和流程. “云计算分布式大数据Hadoop实战高手之路”之完整发布目录 云计算分布式大数据实战技术Hadoop交流群:312494188,每天都会在群中发 ...
- 经典MapReduce作业和Yarn上MapReduce作业运行机制
一.经典MapReduce的作业运行机制 如下图是经典MapReduce作业的工作原理: 1.1 经典MapReduce作业的实体 经典MapReduce作业运行过程包含的实体: 客户端,提交MapR ...
- MapReduce 切片机制源码分析
总体来说大概有以下2个大的步骤 1.连接集群(yarnrunner或者是localjobrunner) 2.submitter.submitJobInternal()在该方法中会创建提交路径,计算切片 ...
- 剖析MapReduce 作业运行机制
包含四个独立的实体: · Client Node 客户端:编写 MapReduce代码,配置作业,提交MapReduce作业. · JobTracker :初始化作业,分配作业,与 TaskTra ...
- Hadoop(17)-MapReduce框架原理-MapReduce流程,Shuffle机制,Partition分区
MapReduce工作流程 1.准备待处理文件 2.job提交前生成一个处理规划 3.将切片信息job.split,配置信息job.xml和我们自己写的jar包交给yarn 4.yarn根据切片规划计 ...
随机推荐
- Python笔记-高阶函数
1.函数式编程 函数式编程就是一种抽象程度很高的编程范式,纯粹的函数式编程语言编写的函数没有变量. 函数式编程的一个特点就是,允许把函数本身作为参数传入另一个函数,还允许返回一个函数! 传入函数 既然 ...
- 七、Android动画
Android的动画可以分为三种:View动画.帧动画和属性动画,帧动画也属于View动画的一种,只不过它和平移.旋转等常见的View动画在表现形式上略有不同而已. 1.View动画 平移动画:Tra ...
- PYTHON定义函数制作简单登录程序(详细)
环境:python3.* 结构: dict_name = {} #定义一个字典,后面用到 def newuser(): #定义注册函数 prompt1='login desired:' while ...
- 自研数据库CynosDB存储系统如何实现即时恢复
本文由云+社区发表 本文作者:许中清,腾讯云自研数据库CynosDB的分布式存储CynosStore负责人.从事数据库内核开发.数据库产品架构和规划.曾就职于华为,2015年加入腾讯,参与过TBase ...
- React---入门(1)
React是什么? React 是一个用于构建用户界面的 JAVASCRIPT 库. React 特点 1.声明式设计 −React采用声明范式,可以轻松描述应用. 2.高效 −React通过对DOM ...
- 前端之BOM
老师的博客:https://www.cnblogs.com/liwenzhou/p/8011504.html BOM(Browser Object Model)是指浏览器对象模型,它使 JavaScr ...
- WPF 控件之 Popup
1.经常使用属性说明 IsOpen: 布尔值,指示 Popup 控件是否显示 StaysOpen: 布尔值,指示在 Popup 控件失去焦点的时候,是否关闭 Popup 控件的显示 PopupAnim ...
- IdentityServer4实战 - 与API单项目整合
一.前言 我们在实际使用 IdentityServer4 的时候,可能会在使用 IdentityServer4 项目添加一些API,比如 找回密码.用户注册.修改用户资料等,这些API与Identit ...
- dump解析入门-用VS解析dump文件进行排障
突然有一天部署在服务器的一个应用挂掉了,没办法只能进入服务器打开 [事件查看器]查看下,好不容易找到了打开后一脸懵逼 事件查看器查到的内容根本对我们排障没有任何作用. 在这个时候如果有对应的dump文 ...
- 类Object
Object概述 java.lang.Object类是Java语言中的根类,即所有类的父类.它中描述的所有方法子类都可以使用.在对象实例化的时候,最终找的父类就是Object. 如果一个类没有特别指定 ...