MapReduce-TextInputFormat 切片机制
MapReduce 默认使用 TextInputFormat 进行切片,其机制如下
(1)简单地按照文件的内容长度进行切片
(2)切片大小,默认等于Block大小,可单独设置
(3)切片时不考虑数据集整体,而是逐个针对每一个文件单独切片 例如:
(1)输入数据有两个文件:
filel.txt 320M
file2.txt 10M
(2)经过 FilelnputFormat(TextInputFormat为其实现类)的切片机制运算后,形成的切片信息如下:
filel.txt.splitl--0~128
filel.txt.split2--128~256
filel.txt.split3--256~320
file2.txt.splitl--0~10M
测试读取数据的方式
输入数据(中间为空格,末尾为换行符)

map 阶段的 k-v

可以看出 k 为偏移量,v 为一行的值,即 TextInputFormat 按行读取
以 WordCount 为例进行测试,测试切片数
测试数据,三个相同的文件

测试代码
package com.mapreduce.wordcount; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.log4j.BasicConfigurator; import java.io.IOException;
import java.util.StringTokenizer; public class WordCount { static {
try {
// 设置 HADOOP_HOME 环境变量
System.setProperty("hadoop.home.dir", "D:/DevelopTools/hadoop-2.9.2/");
// 日志初始化
BasicConfigurator.configure();
// 加载库文件
System.load("D:/DevelopTools/hadoop-2.9.2/bin/hadoop.dll");
} catch (UnsatisfiedLinkError e) {
System.err.println("Native code library failed to load.\n" + e);
System.exit(1);
}
} public static void main(String[] args) throws Exception {
args = new String[]{"D:\\tmp\\input2", "D:\\tmp\\456"};
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); // 设置 InputFormat,默认为 TextInputFormat.class,这里显式设置下,后面设置切片大小
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat.setMinInputSplitSize(job, 1);
TextInputFormat.setMaxInputSplitSize(job, 1024 * 1024 * 128); FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
} public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text(); @Override
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
// 查看 k-v
System.out.println(key + "\t" + value);
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
} public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable(); @Override
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
}

MapReduce-TextInputFormat 切片机制的更多相关文章
- Hadoop(14)-MapReduce框架原理-切片机制
1.FileInputFormat切片机制 切片机制 比如一个文件夹下有5个小文件,切片时会切5个片,而不是一个片 案例分析 2.FileInputFormat切片大小的参数配置 源码中计算切片大小的 ...
- MapReduce-CombineTextInputFormat 切片机制
MapReduce 框架默认的 TextInputFormat 切片机制是对任务按文件规划切片,如果有大量小文件,就会产生大量的 MapTask,处理小文件效率非常低. CombineTextInpu ...
- 【大数据】MapTask并行度和切片机制
一. MapTask并行度决定机制 maptask的并行度决定map阶段的任务处理并发度,进而影响到整个job的处理速度 那么,mapTask并行实例是否越多越好呢?其并行度又是如何决定呢? 1.1 ...
- MapReduce中作业调度机制
MapReduce中作业调度机制主要有3种: 1.先入先出FIFO Hadoop 中默认的调度器,它先按照作业的优先级高低,再按照到达时间的先后选择被执行的作业. 2.公平调度器(相当于时间 ...
- 王家林的“云计算分布式大数据Hadoop实战高手之路---从零开始”的第十一讲Hadoop图文训练课程:MapReduce的原理机制和流程图剖析
这一讲我们主要剖析MapReduce的原理机制和流程. “云计算分布式大数据Hadoop实战高手之路”之完整发布目录 云计算分布式大数据实战技术Hadoop交流群:312494188,每天都会在群中发 ...
- 经典MapReduce作业和Yarn上MapReduce作业运行机制
一.经典MapReduce的作业运行机制 如下图是经典MapReduce作业的工作原理: 1.1 经典MapReduce作业的实体 经典MapReduce作业运行过程包含的实体: 客户端,提交MapR ...
- MapReduce 切片机制源码分析
总体来说大概有以下2个大的步骤 1.连接集群(yarnrunner或者是localjobrunner) 2.submitter.submitJobInternal()在该方法中会创建提交路径,计算切片 ...
- 剖析MapReduce 作业运行机制
包含四个独立的实体: · Client Node 客户端:编写 MapReduce代码,配置作业,提交MapReduce作业. · JobTracker :初始化作业,分配作业,与 TaskTra ...
- Hadoop(17)-MapReduce框架原理-MapReduce流程,Shuffle机制,Partition分区
MapReduce工作流程 1.准备待处理文件 2.job提交前生成一个处理规划 3.将切片信息job.split,配置信息job.xml和我们自己写的jar包交给yarn 4.yarn根据切片规划计 ...
随机推荐
- Flask技术问题汇总
1:Flask 使用 request对象代理了当前请求的上下文.这么做什么好处和坏处? 好处:flask封装了C端发起request对象,这样就可以使用上下文临时把某些对象变为全局可访问:如果不封装, ...
- Android视频录制从不入门到入门系列教程(三)————视频方向
运行Android视频录制从不入门到入门系列教程(二)————显示视频图像中的Demo后,我们应该能发现视频的方向是错误的. 由于Android中,Camera给我们的视频图片的原始方向是下图这个样子 ...
- TTL与非门电路分析
TTL与非门(TTL推挽式与非门)是TTL集成逻辑门的一种,主要由三极管和二极管构成.如图(a)所示,它由输入级,中间级,输出级三部分组成.TTL与非门的优点在于输出阻抗低,带负载能力强,工作速度快. ...
- SQL Server一致性错误修复案例总结
今天遇到了一个关于数据库一致性错误的案例.海外工厂的一台SQL Server 2005(9.00.5069.00 Standard Edition)数据库在做DBCC CHECKDB的时候出现了一致性 ...
- ARMV8体系结构简介
armv8 1.前言 本文的主要内容来源于ARMV8白皮书v5,对ARMV8做一个概述.包含如下的内容: 首先从背景谈起,讲述ARM的发展历程: 之后介绍ARMV8体系结构的基本特征: 介绍A64指令 ...
- saiku环境搭建
说明:搭建saiku环境,BI展示工具. 环境说明: os:windows7 jdk:jdk1.6.0_43 tomcat:apache-tomcat-7.0.62 saiku:saiku-ui-2. ...
- mongodb复制+分片集原理
----------------------------------------复制集---------------------------------------- 一.复制集概述: Mongodb ...
- Runnable和Callable之间的区别
Runnable和Callable之间的区别 1.Runnable任务执行后没有返回值:Callable任务执行后可以获得返回值 2.Runnable的方法是run(),没有返回值:Callable的 ...
- 正则表达式,提取html标签的属性值
/** * 提取HTML标签的属性值 * @param source HTML标签内容 * "<a title=中国体育报 href=''>aaa</a><a ...
- 基于Metronic的Bootstrap开发框架--资产编码打印处理
在开发业务管理系统的时候,往往涉及到资产信息及编码的打印处理,如我们需要对资产信息.条形码.二维码一起打印,以便贴在具体资产信息上面,方便微信公众号.企业微信进行业务处理,那么编码的打印就很有必要了, ...