☆ [POI2007] ZAP-Queries 「莫比乌斯反演」
题目类型:莫比乌斯反演
传送门:>Here<
题意:求有多少对正整数对\((a,b)\),满足\(0<a<A\),\(0<b<B\),\(gcd(a,b)=d\)
解题思路
学了莫比乌斯反演,就以这道题来介绍一下莫比乌斯反演的题的应用(下文中,对数表示在规定范围内满足特定条件的数对数量,不是\(log\)的那个对数)
一般碰到有关\(gcd\)的题,一般地,设\(f(n)\)表示\(gcd=n\)的对数,\(F(n)\)表示\(n|gcd\)的对数
根据定义,满足$$F(n)=\sum\limits_{n|d}f(d)$$因此利用公式二进行反演$$f(n)=\sum\limits_{n|d}μ(\dfrac{d}{n})F(d)$$我们之所以要反演,是因为\(F\)比\(f\)更好求。我们根据\(gcd\)的性质,发现其实\(F\)就是要求两数都为\(n\)的倍数的对数。因此根据乘法原理,也就是$$\left \lfloor \dfrac{A}{n} \right \rfloor * \left \lfloor \dfrac{B}{n} \right \rfloor$$。可以\(O(1)\)求得
因此只需要筛完\(μ\)之后直接求\(f(d)\)作为答案即可。复杂度\(O(n)\)
然而\(O(n)\)的复杂度不足以满足题目要求,因此需要数论分块(整除分块)来优化到\(O(\sqrt{n})\)即可。关于整除分块的用法见上一篇。
Code
/*By DennyQi 2018*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
#define r read()
using namespace std;
typedef long long ll;
const int MAXN = 50010;
const int INF = 1061109567;
const int LIM = 50010;
inline int Max(const int a, const int b){ return (a > b) ? a : b; }
inline int Min(const int a, const int b){ return (a < b) ? a : b; }
inline int read(){
int x = 0; int w = 1; register char c = getchar();
for(; c ^ '-' && (c < '0' || c > '9'); c = getchar());
if(c == '-') w = -1, c = getchar();
for(; c >= '0' && c <= '9'; c = getchar()) x = (x<<3) + (x<<1) + c - '0'; return x * w;
}
int T,A,B,d,ans,last,R;
int mu[MAXN],b[MAXN],prime[MAXN],sumu[MAXN],tot;
inline void getMobius(){
mu[1] = 1;
for(int i = 2; i <= LIM; ++i){
if(!b[i]){
prime[++tot] = i;
mu[i] = -1;
}
for(int j = 1; j <= tot; ++j){
if(i * prime[j] > LIM) break;
b[i * prime[j]] = 1;
if(i % prime[j] == 0){
mu[i * prime[j]] = 0;
break;
}
else{
mu[i * prime[j]] = -mu[i];
}
}
}
for(int i = 1; i <= LIM; ++i){
sumu[i] = sumu[i-1] + mu[i];
}
}
int main(){
getMobius();
T = r;
while(T--){
A = r, B = r, d = r;
ans = 0;
A /= d, B /= d;
for(int i = 1, j; i <= Min(A,B); i = j+1){
j = Min(A/(A/i), B/(B/i));
ans += (A/i) * (B/i) * (sumu[j] - sumu[i-1]);
}
printf("%d\n", ans);
}
return 0;
}
☆ [POI2007] ZAP-Queries 「莫比乌斯反演」的更多相关文章
- 「BZOJ 3529」「SDOI 2014」数表「莫比乌斯反演」
题意 有一张 \(n\times m\) 的数表,其第\(i\)行第\(j\)列的数值为能同时整除\(i\)和\(j\)的所有自然数之和. \(T\)组数据,询问对于给定的 \(n,m,a\) , 计 ...
- 「BZOJ 3994」「SDOI 2015」约数个数和「莫比乌斯反演」
题意 设\(d(x)\)为\(x\)的约数个数,求\(\sum_{i=1}^{n}\sum_{j=1}^{m}d(ij)\). 题解 首先证个公式: \[d(ij) = \sum_{x|i}\sum_ ...
- 「CF235E」Number Challenge「莫比乌斯反演」
一个结论:(从二维扩展来的,三维也是对的,证明可以考虑质因数分解) \[ d(ijk)=\sum_{i'|i}\sum_{j'|j}\sum_{k'|k}[\gcd(i',j')=1][\gcd(i' ...
- 【Luogu3455】【POI2007】ZAP-Queries(莫比乌斯反演)
[Luogu3455][POI2007]ZAP-Queries(莫比乌斯反演) 题面 题目描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x ...
- Note -「单位根反演」学习笔记
\(\mathcal{Preface}\) 单位根反演,顾名思义就是用单位根变换一类式子的形式.有关单位根的基本概念可见我的这篇博客. \(\mathcal{Formula}\) 单位根反演的 ...
- BZOJ 1101 [POI2007]Zap | 第一道莫比乌斯反(繁)演(衍)
题目: http://www.lydsy.com/JudgeOnline/problem.php?id=1101 题解: http://www.cnblogs.com/mrha/p/8203612.h ...
- luogu3455 [POI2007]ZAP-Queries 简单的莫比乌斯反演
link ms是莫比乌斯反演里最水的题... 题意:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 多组询问, T<=50000, ...
- Note -「Mobius 反演」光速入门
目录 Preface 数论函数 积性函数 Dirichlet 卷积 Dirichlet 卷积中的特殊函数 Mobius 函数 & Mobius 反演 Mobius 函数 Mobius 反演 基 ...
- 【BZOJ2301】【HAOI2011】Problem B(莫比乌斯反演)
[BZOJ2301][HAOI2011]Problem B(莫比乌斯反演) 题面 Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y ...
随机推荐
- 查看系统cpu性能top和多核cpu使用性能
1.使用top查看系统当前负载情况. 在显示过程 按P会按照cpu使用率排序,按M会按照内存占用率排序. 2.多核CPU上,每个核的使用率,使用 mpstat mpstat -P ALL 1 10 - ...
- clCreateBuffer和clCreateBuufer + clEnqueueWriteBuffer
有两种方式实现从主机到CL设备的数据传递, 第一种: cl_mem input = clCreateBuffer(context,CL_MEM_READ_ONLY,sizeof(float) * DA ...
- WPS客户端更新日志留着备用
WPS Office (10.1.0.7520)==========================================新增功能列表------------WPS文字1 拼写检查:新增“中 ...
- postman测试方法,出现400错误码
下午毛概课上帮同学debug了个错误: postman测试 ,得到返回 400的状态码错误: 查询博客: https://blog.csdn.net/zhangmengleiblog/article/ ...
- AngularJS学习之旅—AngularJS Http(九)
1.AngularJS XMLHttpRequest $http 是 AngularJS 中的一个核心服务,用于读取远程服务器的数据. eg: // 简单的 GET 请求,可以改为 POST $htt ...
- 转:sql server锁知识及锁应用
sql server锁(lock)知识及锁应用 提示:这里所摘抄的关于锁的知识有的是不同sql server版本的,对应于特定版本时会有问题. 一 关于锁的基础知识 (一). 为什么要引入锁 当多个用 ...
- c/c++ 多线程 detach的困惑
多线程 detach的困惑 求大神解答: 1,当在一个函数里启动一个线程后,并detach了 2,detach的线程里使用了这个函数里new出来的一个对象 3,detach后,delete了这个对象 ...
- iOS transform属性的使用
1.transform属性 在iOS开发中,通过transform属性可以修改UIView对象的平移.缩放比例和旋转角度,常用的创建transform结构体方法分两大类 (1) 创建“基于控件初始位置 ...
- 重装助手教你如何禁用Windows 10快速启动
快速启动是首先在Windows 8中实现并延续到Windows 10的功能,可在启动PC时提供更快的启动时间.它是一个方便的功能,也是大多数人在不知情的情况下使用的功能,但还有一些功能会在他们掌握新P ...
- JavaScript数据类型之null和undeined
null null是JavaScrpt的关键字,表示一个特殊值,常用于描述"空值".对null执行typeof运算将返回字符串"object". undefin ...