☆ [POI2007] ZAP-Queries 「莫比乌斯反演」
题目类型:莫比乌斯反演
传送门:>Here<
题意:求有多少对正整数对\((a,b)\),满足\(0<a<A\),\(0<b<B\),\(gcd(a,b)=d\)
解题思路
学了莫比乌斯反演,就以这道题来介绍一下莫比乌斯反演的题的应用(下文中,对数表示在规定范围内满足特定条件的数对数量,不是\(log\)的那个对数)
一般碰到有关\(gcd\)的题,一般地,设\(f(n)\)表示\(gcd=n\)的对数,\(F(n)\)表示\(n|gcd\)的对数
根据定义,满足$$F(n)=\sum\limits_{n|d}f(d)$$因此利用公式二进行反演$$f(n)=\sum\limits_{n|d}μ(\dfrac{d}{n})F(d)$$我们之所以要反演,是因为\(F\)比\(f\)更好求。我们根据\(gcd\)的性质,发现其实\(F\)就是要求两数都为\(n\)的倍数的对数。因此根据乘法原理,也就是$$\left \lfloor \dfrac{A}{n} \right \rfloor * \left \lfloor \dfrac{B}{n} \right \rfloor$$。可以\(O(1)\)求得
因此只需要筛完\(μ\)之后直接求\(f(d)\)作为答案即可。复杂度\(O(n)\)
然而\(O(n)\)的复杂度不足以满足题目要求,因此需要数论分块(整除分块)来优化到\(O(\sqrt{n})\)即可。关于整除分块的用法见上一篇。
Code
/*By DennyQi 2018*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
#define r read()
using namespace std;
typedef long long ll;
const int MAXN = 50010;
const int INF = 1061109567;
const int LIM = 50010;
inline int Max(const int a, const int b){ return (a > b) ? a : b; }
inline int Min(const int a, const int b){ return (a < b) ? a : b; }
inline int read(){
int x = 0; int w = 1; register char c = getchar();
for(; c ^ '-' && (c < '0' || c > '9'); c = getchar());
if(c == '-') w = -1, c = getchar();
for(; c >= '0' && c <= '9'; c = getchar()) x = (x<<3) + (x<<1) + c - '0'; return x * w;
}
int T,A,B,d,ans,last,R;
int mu[MAXN],b[MAXN],prime[MAXN],sumu[MAXN],tot;
inline void getMobius(){
mu[1] = 1;
for(int i = 2; i <= LIM; ++i){
if(!b[i]){
prime[++tot] = i;
mu[i] = -1;
}
for(int j = 1; j <= tot; ++j){
if(i * prime[j] > LIM) break;
b[i * prime[j]] = 1;
if(i % prime[j] == 0){
mu[i * prime[j]] = 0;
break;
}
else{
mu[i * prime[j]] = -mu[i];
}
}
}
for(int i = 1; i <= LIM; ++i){
sumu[i] = sumu[i-1] + mu[i];
}
}
int main(){
getMobius();
T = r;
while(T--){
A = r, B = r, d = r;
ans = 0;
A /= d, B /= d;
for(int i = 1, j; i <= Min(A,B); i = j+1){
j = Min(A/(A/i), B/(B/i));
ans += (A/i) * (B/i) * (sumu[j] - sumu[i-1]);
}
printf("%d\n", ans);
}
return 0;
}
☆ [POI2007] ZAP-Queries 「莫比乌斯反演」的更多相关文章
- 「BZOJ 3529」「SDOI 2014」数表「莫比乌斯反演」
题意 有一张 \(n\times m\) 的数表,其第\(i\)行第\(j\)列的数值为能同时整除\(i\)和\(j\)的所有自然数之和. \(T\)组数据,询问对于给定的 \(n,m,a\) , 计 ...
- 「BZOJ 3994」「SDOI 2015」约数个数和「莫比乌斯反演」
题意 设\(d(x)\)为\(x\)的约数个数,求\(\sum_{i=1}^{n}\sum_{j=1}^{m}d(ij)\). 题解 首先证个公式: \[d(ij) = \sum_{x|i}\sum_ ...
- 「CF235E」Number Challenge「莫比乌斯反演」
一个结论:(从二维扩展来的,三维也是对的,证明可以考虑质因数分解) \[ d(ijk)=\sum_{i'|i}\sum_{j'|j}\sum_{k'|k}[\gcd(i',j')=1][\gcd(i' ...
- 【Luogu3455】【POI2007】ZAP-Queries(莫比乌斯反演)
[Luogu3455][POI2007]ZAP-Queries(莫比乌斯反演) 题面 题目描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x ...
- Note -「单位根反演」学习笔记
\(\mathcal{Preface}\) 单位根反演,顾名思义就是用单位根变换一类式子的形式.有关单位根的基本概念可见我的这篇博客. \(\mathcal{Formula}\) 单位根反演的 ...
- BZOJ 1101 [POI2007]Zap | 第一道莫比乌斯反(繁)演(衍)
题目: http://www.lydsy.com/JudgeOnline/problem.php?id=1101 题解: http://www.cnblogs.com/mrha/p/8203612.h ...
- luogu3455 [POI2007]ZAP-Queries 简单的莫比乌斯反演
link ms是莫比乌斯反演里最水的题... 题意:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 多组询问, T<=50000, ...
- Note -「Mobius 反演」光速入门
目录 Preface 数论函数 积性函数 Dirichlet 卷积 Dirichlet 卷积中的特殊函数 Mobius 函数 & Mobius 反演 Mobius 函数 Mobius 反演 基 ...
- 【BZOJ2301】【HAOI2011】Problem B(莫比乌斯反演)
[BZOJ2301][HAOI2011]Problem B(莫比乌斯反演) 题面 Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y ...
随机推荐
- 在IIS上部署你的ASP.NET Core 2.1项目
1.在控制面板→程序→启用或关闭Windows功能→勾选Internet Information Services以及Web管理工具下的IIS管理控制台 2.IIS 安装AspNetCoreModul ...
- $符号报not defing 报错
https://blog.csdn.net/weixin_37969488/article/details/84250833 最近因为工作问题,需要我把别的项目上的一些jsp网页copy到新项目上.放 ...
- 微信小程序(一),授权页面搭建
wxml代码如下: <!--pages/index2/index2.wxml--> <view class="index2Container"> <i ...
- Setup script exited with error: command 'x86_64-linux-gnu-gcc' failed with exit status 1 解决办法
今天在Ubuntu16.04 上安装python包的时候,出现了这个坑爹的问题: 解决办法,内容总结如下 情况是这样,报错是因为没有把依赖包安装全,报错情况如下图: 解决办法,先安装一些必须的依赖: ...
- MFC桌面电子时钟的设计与实现
目录 核心技术 需求分析 程序设计 程序展示 (一)核心技术 MFC(Micosoft Foundation Class Libay,微基础类库)是微基于Windows平台下的C++类库集合,MFC包 ...
- PowerDesigner表设计中的P F M分别代表什么意思?
版本 如下图中的P.F.M代表什么意思呢? P即primary,主键的意思 F即foreign key,外键的意思 M即mandatory,强制不可为空的意思
- LeetCode算法题-Poor Pigs(Java实现)
这是悦乐书的第235次更新,第248篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第102题(顺位题号是455).有1000个水桶,其中只有一个水桶含有毒药,其余的都没毒 ...
- Docker:测试环境的准备-centos7上安装docker
Dockers官方部署文档:https://docs.docker.com/install/linux/docker-ce/centos/ 1.建议先关闭 selinux (selinux是 linu ...
- JavaScript Uncaught TypeError: Cannot read property 'value' of null
用 JavaScript 操作 DOM 时出现如下错误: Uncaught TypeError: Cannot set property 'value' of null Uncaught TypeEr ...
- .net 添加api不能访问的问题
在一个.netmvc项目中,本身没有提供api后来想添加api就会出现问题.会发生添加的apicontrol不能访问的情况.这种情况一般是因为,global文件中,application_start( ...