Regularity criteria for NSE 4: $\p_3u$
In [Zhang, Zujin. An improved regularity criterion for the Navier–Stokes equations in terms of one directional derivative of the velocity field. Bull. Math. Sci. 8 (2018), no. 1, 33--47] we have improved the results in Kukavica and Ziane (J Math Phys 48:065203, 2007) and Cao (Discrete Contin Dyn Syst 26:1141–1151, 2010) simultaneously. The result reads: the condition
$$\bee\label{me}\p_3\bbu\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=2,\quad \frac{3\sqrt{37}}{4}-3\leq q\leq 3\eee$$
could ensure the regularity of the solution.
see https://link.springer.com/article/10.1007/s13373-016-0098-x.
Regularity criteria for NSE 4: $\p_3u$的更多相关文章
- Regularity criteria for NSE 5: $u_3,\om_3$
In [Zhang, Zujin. Serrin-type regularity criterion for the Navier-Stokes equations involving one vel ...
- Regularity criteria for NSE 6: $u_3,\p_3u_1,\p_3u_2$
In [Zujin Zhang, Jinlu Li, Zheng-an Yao, A remark on the global regularity criterion for the 3D Navi ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 4: $u\cdot \om$
在 [Berselli, Luigi C.; Córdoba, Diego. On the regularity of the solutions to the 3D Navier-Stokes eq ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 3: $u\times \f{\om}{|\om|}\cdot \f{\vLm^\be u}{|\vLm^\be u|}$
在 [Chae, Dongho; Lee, Jihoon. On the geometric regularity conditions for the 3D Navier-Stokes equati ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 2: $u\times \om\cdot \n\times \om$
在 [Lee, Jihoon. Notes on the geometric regularity criterion of 3D Navier-Stokes system. J. Math. Phy ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 1: $u\times \om$
在 [Chae, Dongho. On the regularity conditions of suitable weak solutions of the 3D Navier-Stokes equ ...
- 液晶流在齐次 Besov 空间中的正则性准则
在 [Zhang, Zujin. Regularity criteria for the three dimensional Ericksen–Leslie system in homogeneous ...
- Collections of Zujin Zhang's Published works
I am not good, but I shall do my best to be better. Any questions, please feel free to contact zhang ...
- 乘积型Sobolev不等式
(Multiplicative Sobolev inequality). Let $\mu,\lambda$ and $\gamma$ be three parameters that satisfy ...
随机推荐
- 虚拟机配置Linux上网环境
概要:在虚拟机安装CentOS6.5的环境后,配置NAT模式,修改系统文件支持上网. (1)ip地址的配置,IP地址的子网掩码为255.255.255.0. (2)网关的指定,也就是默认路由,当我们需 ...
- css_选择器
老师的博客:https://www.cnblogs.com/liwenzhou/p/7999532.html 参考w3 school:http://www.w3school.com.cn/css/cs ...
- KERBEROS PROTOCOL TUTORIAL
KERBEROS PROTOCOL TUTORIAL This tutorial was written by Fulvio Ricciardi and is reprinted here wit ...
- 模拟vue的tag属性,在react里实现自定义Link
我封装了一个简单的实现react里自定义Link的方法,方便大家使用. 因为普通组件没有metch.location.history等属性.只有在<Router>里面的<compon ...
- 《通过C#学Proto.Actor模型》之Persistence
Actor是有状态的,当每一步执行失败后,返回失败地方继续执行时,希望此时的状态是正确的,为了保证这一点,持久化就成了必要的环节了. Proto.Actor提供了三种方式执久化: Event Sour ...
- Vue-移动端项目真机测试
一.查看ip地址 在控制台输入 ifconfig 查看ip地址 二.修改webpack-dev-server配置项 webpack-dev-server 默认不支持ip地址访问,需要修改配置项 三.测 ...
- iOS开发基础篇-手写控件
一.手写控件的步骤 1)使用相应的控件类创建控件对象: 2)设置该控件的各种属性: 3)添加空间到视图中: 4)如果是 UIButton 等控件,还需考虑控件的单击事件等: 二.添加 UIButton ...
- springboot maven 报错ArtifactDescriptorException
maven具体报错提示如下: Description Resource Path Location TypeArtifactDescriptorException: Failed to read ar ...
- Flask WTForms的使用和源码分析 —— (7)
Flask-WTF是简化了WTForms操作的一个第三方库.WTForms表单的两个主要功能是验证用户提交数据的合法性以及渲染模板.还有其它一些功能:CSRF保护, 文件上传等.安装方法: pip3 ...
- [模板] 快速傅里叶变换/FFT/NTT
简介 FFT是多项式乘法的一种快速算法, 时间复杂度 \(O(n \log n)\). FFT可以用于求解形如\(C_i = \sum_{j=0}^i A_jB_{i-j}\)的式子. 如果下标有偏差 ...