DZY Loves Physics

CodeForces - 444A

DZY loves Physics, and he enjoys calculating density.

Almost everything has density, even a graph. We define the density of a non-directed graph (nodes and edges of the graph have some values) as follows:

where v is the sum of the values of the nodes, e is the sum of the values of the edges.

Once DZY got a graph G, now he wants to find a connected induced subgraph G' of the graph, such that the density of G' is as large as possible.

An induced subgraph G'(V', E') of a graph G(V, E) is a graph that satisfies:

  • ;
  • edge  if and only if , and edge ;
  • the value of an edge in G' is the same as the value of the corresponding edge in G, so as the value of a node.

Help DZY to find the induced subgraph with maximum density. Note that the induced subgraph you choose must be connected.

Input

The first line contains two space-separated integers n (1 ≤ n ≤ 500), . Integer n represents the number of nodes of the graph Gmrepresents the number of edges.

The second line contains n space-separated integers xi (1 ≤ xi ≤ 106), where xirepresents the value of the i-th node. Consider the graph nodes are numbered from 1to n.

Each of the next m lines contains three space-separated integers ai, bi, ci (1 ≤ ai < bi ≤ n; 1 ≤ ci ≤ 103), denoting an edge between node ai and bi with value ci. The graph won't contain multiple edges.

Output

Output a real number denoting the answer, with an absolute or relative error of at most 10 - 9.

Examples

Input
1 0
1
Output
0.000000000000000
Input
2 1
1 2
1 2 1
Output
3.000000000000000
Input
5 6
13 56 73 98 17
1 2 56
1 3 29
1 4 42
2 3 95
2 4 88
3 4 63
Output
2.965517241379311

Note

In the first sample, you can only choose an empty subgraph, or the subgraph containing only node 1.

In the second sample, choosing the whole graph is optimal.

sol:超有趣的结论题。

结论:答案肯定是一个最多只有一条边的子图;

证明:在已经有两个点的一张子图中,如果加入一个新点会使得答案更优,那么肯定新点和两个点其中一个或图中一个点比三个点的更优

#include <bits/stdc++.h>
using namespace std;
typedef int ll;
inline ll read()
{
ll s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int N=;
int n,m;
double Quanz[N];
int main()
{
int i;
double ansV=,ansE=;
R(n); R(m);
for(i=;i<=n;i++) R(Quanz[i]);
for(i=;i<=m;i++)
{
int x,y;
double z;
R(x); R(y); R(z);
if((ansE==)||(double)(ansV/ansE)<(double)(Quanz[x]+Quanz[y])/z)
{
ansV=Quanz[x]+Quanz[y]; ansE=z;
}
}
if(ansE==) puts("0.00000000000000000");
else printf("%.17lf\n",ansV/ansE);
return ;
}
/*
Input
1 0
1
Output
0.000000000000000 Input
2 1
1 2
1 2 1
Output
3.000000000000000 Input
5 6
13 56 73 98 17
1 2 56
1 3 29
1 4 42
2 3 95
2 4 88
3 4 63
Output
2.965517241379311
*/

codeforces444A的更多相关文章

随机推荐

  1. RabbitMQ如何工作和RabbitMQ核心概念

    RabbitMQ是一个开源的消息代理软件.它接受来自生产者的消息并将其传递给消费者.它就像一个中间人,可以用来减少Web应用程序服务器的负载和交付时间. RabbitMQ如何工作 让我们简要介绍一下R ...

  2. Java发送电子邮件

    转自 https://blog.csdn.net/xietansheng/article/details/51673073 纯代码, 详情请至原文查看 需要一个javamail的jar包 以下为实现代 ...

  3. MyEclipse自动补全

    打开MyEclipse 6.5,然后"window"→"Preferences". 选择"java",展开,"Editor&quo ...

  4. 轨迹系列6——车载GPS对接方案汇总小结(809、自定义协议、前置库、WS)

    文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/ 1.背景 最近在不同项目中对接了多个车载GPS厂商服务终端,绝大多数厂商 ...

  5. .net mvc session失效问题

    最近解决基于.net mvc项目的session失效问题,这个跟大家聊聊. 1.问题分析 .net mvc中,Session失效需要考虑几种情况: 基于权限认证的Action,使用非Ajax请求: 基 ...

  6. iOS-----------设置自定义字体

    1.将字体加入到项目中 2.在info.plist文件中加入相应信息,这一步实际上实在项目的Info页里面增加Fonts provided by application项,并设置相应的ttf文件进去, ...

  7. 从零学习Fluter(七):Flutter打包apk详解

    写一个win上 flutter 打包apk的教程 这篇文档介绍一下flutter打包发布正式版apk 整体来看,和命令行打包rn的方法相差不大 打包前先做检查工作&查看构建配置 Android ...

  8. 理解java的三种代理模式

    代理模式是什么 代理模式是一种设计模式,简单说即是在不改变源码的情况下,实现对目标对象的功能扩展. 比如有个歌手对象叫Singer,这个对象有一个唱歌方法叫sing(). 1 public class ...

  9. WinServer-FTP搭建

    FTP服务器(File Transfer Protocol Server)是在互联网上提供文件存储和访问服务的计算机,它们依照FTP协议提供服务. FTP是File Transfer Protocol ...

  10. 一、Windows Server 2016 AD服务器搭建

    简介: AD是Active Directory的简写,中文称活动目录.活动目录(Active Directory)主要提供以下功能: 1)服务器及客户端计算机管理 2)用户服务 3)资源管理 4)桌面 ...