codeforces444A
DZY Loves Physics
DZY loves Physics, and he enjoys calculating density.
Almost everything has density, even a graph. We define the density of a non-directed graph (nodes and edges of the graph have some values) as follows:
where v is the sum of the values of the nodes, e is the sum of the values of the edges.
Once DZY got a graph G, now he wants to find a connected induced subgraph G' of the graph, such that the density of G' is as large as possible.
An induced subgraph G'(V', E') of a graph G(V, E) is a graph that satisfies:
;
- edge
if and only if
, and edge
;
- the value of an edge in G' is the same as the value of the corresponding edge in G, so as the value of a node.
Help DZY to find the induced subgraph with maximum density. Note that the induced subgraph you choose must be connected.
Input
The first line contains two space-separated integers n (1 ≤ n ≤ 500), . Integer n represents the number of nodes of the graph G, mrepresents the number of edges.
The second line contains n space-separated integers xi (1 ≤ xi ≤ 106), where xirepresents the value of the i-th node. Consider the graph nodes are numbered from 1to n.
Each of the next m lines contains three space-separated integers ai, bi, ci (1 ≤ ai < bi ≤ n; 1 ≤ ci ≤ 103), denoting an edge between node ai and bi with value ci. The graph won't contain multiple edges.
Output
Output a real number denoting the answer, with an absolute or relative error of at most 10 - 9.
Examples
1 0
1
0.000000000000000
2 1
1 2
1 2 1
3.000000000000000
5 6
13 56 73 98 17
1 2 56
1 3 29
1 4 42
2 3 95
2 4 88
3 4 63
2.965517241379311
Note
In the first sample, you can only choose an empty subgraph, or the subgraph containing only node 1.
In the second sample, choosing the whole graph is optimal.
sol:超有趣的结论题。
结论:答案肯定是一个最多只有一条边的子图;
证明:在已经有两个点的一张子图中,如果加入一个新点会使得答案更优,那么肯定新点和两个点其中一个或图中一个点比三个点的更优
#include <bits/stdc++.h>
using namespace std;
typedef int ll;
inline ll read()
{
ll s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int N=;
int n,m;
double Quanz[N];
int main()
{
int i;
double ansV=,ansE=;
R(n); R(m);
for(i=;i<=n;i++) R(Quanz[i]);
for(i=;i<=m;i++)
{
int x,y;
double z;
R(x); R(y); R(z);
if((ansE==)||(double)(ansV/ansE)<(double)(Quanz[x]+Quanz[y])/z)
{
ansV=Quanz[x]+Quanz[y]; ansE=z;
}
}
if(ansE==) puts("0.00000000000000000");
else printf("%.17lf\n",ansV/ansE);
return ;
}
/*
Input
1 0
1
Output
0.000000000000000 Input
2 1
1 2
1 2 1
Output
3.000000000000000 Input
5 6
13 56 73 98 17
1 2 56
1 3 29
1 4 42
2 3 95
2 4 88
3 4 63
Output
2.965517241379311
*/
codeforces444A的更多相关文章
随机推荐
- 4 Redis 配置文件介绍
2016-12-22 14:28:39 该系列文章链接NoSQL 数据库简介Redis的安装及及一些杂项基础知识Redis 的常用五大数据类型(key,string,hash,list,set,zse ...
- Dynamics 365中配置和使用文件夹级别的跟踪(folder-level tracking)
本人微信和易信公众号:微软动态CRM专家罗勇 ,回复274或者20180630可方便获取本文,同时可以在第一间得到我发布的最新的博文信息,follow me!我的网站是 www.luoyong.me ...
- Odoo POS会员积分当钱用如何设置?
问题提问 设定积分规则1元积1分.而后每1积分可以当1分钱用,POS中能处理吗? 解决方案 1) 设定服务类型产品“积分”,其单价为0.01,收入科目为“销售费用” 2) 设定积分计划:积分规则是,订 ...
- arcgis api 3.x for js 入门开发系列五地图态势标绘(附源码下载)
前言 关于本篇功能实现用到的 api 涉及类看不懂的,请参照 esri 官网的 arcgis api 3.x for js:esri 官网 api,里面详细的介绍 arcgis api 3.x 各个类 ...
- Arcgis瓦片--数据获取
Arcgis的二维地图瓦片有两种获取方式 1.在Arcmap中对配置好的地图进行切图,生成对应瓦片 2.使用第三方的地图下载器,直接下载,导出成arcgis瓦片格式即可使用. 备注:这里主要介绍第二种 ...
- 功能强大的PDF实用工具
PDF实用工具(PDFTool)是北京博信施科技有限有限公司研制开发的一款专门提供对PDF文件进行编辑.加工的处理软件.本软件具有对PDF文件进行分割.结合.加密.解密.添加水印.设定有效期限等多种功 ...
- python 的with用途(清理资源和异常处理,同时代码精简)
参考如下博客. https://www.cnblogs.com/DswCnblog/p/6126588.html #!/usr/bin/env python # with_example02.py c ...
- Python枚举类
Enum可以把一组相关常量定义在一个class中,且class不可变,而且成员可以直接比较. 定义枚举类: from enum import Enum, unique @unique class We ...
- 彻底删除mysql服务(清理注册表)
由于安装某个项目的执行文件,提示要卸载MySQL以便它自身MySQL安装,然后我禁用了MYSQL服务,再把这个文件夹删除后,发现还是提示请卸载MYSQL服务. 解决步骤: 1.以管理员身份运行命令提示 ...
- mssql 存储过程调用另一个存储过程中的结果的方法分享
转自:http://www.maomao365.com/?p=6801 摘要: 下文将分享"一个存储过程"中如何调用"另一个存储过程的返回结果",并应用到自身的 ...