7.10

T1:求出一个矩阵中平均数大于0的子矩阵的最大面积.

T2:给出一个N行的,第I行有n+1-i的倒三角形,从中选取m个数,只有当前数的左上角和右上角都被选是才能选当前数,求选的数字的最大和

T3:给一个有向无环图,求任意两点间距离除以边数的最小值.

Sol:

T1:n^2枚举行的两端,然后用处理出当前列的前缀和,只有Sum[i]-Sum[j]>0时j+1~i才满足要求 并且要求i-j最大.我们把它按照数值排序,注意Sum[0]也算,排序后从0扫到n就可以得到最小的Id值,每次更新最小的Id,和最长的距离就可以了.

T2:斜着进行DP,第一个斜行长度为n,第n个斜行长度为1,刷了改行个斜行长度为K,那么前一行长度要小于等于K+1。最后输出Max(F[n][0][m],F[n][1][m]) STD的做法奥妙重重.

T3.直接Floyd但是要记录边长的Floyd,暴力枚举就可以了.

 #include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#define LL long long
using namespace std;
const LL Maxn=;
const LL Inf=(LL)<<;
LL a[Maxn][Maxn],Sum[Maxn][Maxn],n,m,Ans;
struct Node{LL v,id;}S[Maxn];
inline LL Max(LL x,LL y) {return x>y?x:y;}
inline LL Min(LL x,LL y) {return x>y?y:x;}
inline bool cmp(Node A,Node B)
{
if (A.v==B.v) return A.id>B.id;
return A.v<B.v;
}
int main()
{
scanf("%lld%lld",&n,&m);
for (LL i=;i<=n;i++)
{
Sum[i][]=;
for (LL j=;j<=m;j++) scanf("%lld",&a[i][j]),Sum[i][j]=Sum[i][j-]+a[i][j];
}
Ans=;
for (LL i=;i<=m;i++)
{ for (LL j=i;j<=m;j++)
{
S[].v=; S[].id=;
for (LL k=;k<=n;k++) S[k].v=S[k-].v+(Sum[k][j]-Sum[k][i-]),S[k].id=k;
sort(S,S+n+,cmp); LL Mx=,Mn=Inf;
for (LL k=;k<=n;k++)
{
Mn=Min(Mn,S[k].id);
Mx=Max(Mx,S[k].id-Mn);
}
Ans=Max(Ans,Mx*(j-i+));
}
}
printf("%lld\n",Ans);
return ;
}

T1

 #include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
int a[][],Sum[][],F[][][],n,m;
inline int Max(int x,int y) {return x>y?x:y;}
int main()
{
scanf("%d%d",&n,&m);
for (int i=;i<=n;i++)
for (int j=;j<=n-i+;j++) scanf("%d",&a[i][j]);
for (int i=;i<=n;i++)
for (int j=;j<=n-i+;j++) Sum[j][i]=Sum[j-][i]+a[j][i]; for (int i=;i<=n;i++)
for (int j=;j<=n-i+;j++)
for (int k=;k<=j+;k++)
for (int s=j;s<=m;s++)
F[i][j][s]=Max(F[i][j][s],F[i-][k][s-j]+Sum[j][i]); printf("%d\n",Max(F[n][][m],F[n][][m]));
return ;
}

T2

 #include <cstdio>
const int Inf=0x3f3f3f3f;
int F[][][],n,m,q,u,v,w,G[][];
inline int Min(int x,int y) {return x>y?y:x;}
int main()
{
scanf("%d%d",&n,&m);
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
for (int k=;k<=n;k++) F[i][j][k]=Inf;
for (int i=;i<=n;i++) F[i][i][]=;
for (int i=;i<=m;i++)
scanf("%d%d%d",&u,&v,&w),F[u][v][]=Min(F[u][v][],w); for (int k=;k<=n;k++)
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
for (int p=;p<=n;p++)
F[i][j][p]=Min(F[i][j][p],F[i][k][p-]+F[k][j][]);
scanf("%d",&q);
for (int i=;i<=q;i++)
{
scanf("%d%d",&u,&v); double Ans=(double)Inf;
if (G[u][v]!=) Ans=G[u][v]; else
{
for (int j=;j<=n;j++)
if (F[u][v][j]<Inf && ((double)(F[u][v][j])/(double)(j))<Ans) Ans=((double)(F[u][v][j])/(double)(j));
}
G[u][v]=Ans;
if (Ans>=Inf) puts("OMG!"); else printf("%0.3lf\n",Ans);
}
return ;
}

T3

7.11

T1. 注意到我们并不需要求出具体的周期是多少。

如果

NOIP2016 模拟赛的更多相关文章

  1. 串门赛: NOIP2016模拟赛——By Marvolo 丢脸记

    前几天liu_runda来机房颓废,顺便扔给我们一个网址,说这上面有模拟赛,让我们感兴趣的去打一打.一开始还是没打算去看一下的,但是听std说好多人都打,想了一下,还是打一打吧,打着玩,然后就丢脸了. ...

  2. 学军NOIP2016模拟赛1

    GTMD这么水的一套题没有AK T1:妥妥的二分答案,贪心check. T2:问题可以转化为最长上升(还是下降我记不住了)子序列. T3:发现点被覆盖上的顺序是一定的.求出这个顺序,第一个操作在线段树 ...

  3. NOIP2016模拟赛三 Problem B: 神奇的树

    题面 Description 有一棵神奇的树.这棵树有N个节点,在每个节点上都有宝藏,每个宝藏价值V[i]金币:对于每条边,每经过一次都要花费C[i]金币. 值得注意的是,每个宝藏只能领取一次(也可以 ...

  4. NOIP2016模拟赛三 Problem C: 不虚就是要AK

    题目大意 给定一棵带有边权的树, 问你在树上随机选两个点, 它们最短路径上的边权之和为\(4\)的倍数的概率为多少. Solution 树分治. 没什么好讲的. #include <cstdio ...

  5. 5.4QBXT 模拟赛 (Rank1 机械键盘 蛤蛤)

    NOIP2016提高组模拟赛 ——By wangyurzee7 中文题目名称 纸牌 杯具 辣鸡 英文题目与子目录名 cards cups spicychicken 可执行文件名 cards cups ...

  6. 4.28 QBXT模拟赛

    NOIP2016提高组模拟赛 ——By wangyurzee7 中文题目名称 迷妹 膜拜 换数游戏 英文题目与子目录名 fans mod game 可执行文件名 fans mod game 输入文件名 ...

  7. NOIP模拟赛20161022

    NOIP模拟赛2016-10-22 题目名 东风谷早苗 西行寺幽幽子 琪露诺 上白泽慧音 源文件 robot.cpp/c/pas spring.cpp/c/pas iceroad.cpp/c/pas ...

  8. NOI模拟赛 Day1

    [考完试不想说话系列] 他们都会做呢QAQ 我毛线也不会呢QAQ 悲伤ING 考试问题: 1.感觉不是很清醒,有点困╯﹏╰ 2.为啥总不按照计划来!!! 3.脑洞在哪里 4.把模拟赛当作真正的比赛,紧 ...

  9. NOIP第7场模拟赛题解

    NOIP模拟赛第7场题解: 题解见:http://www.cqoi.net:2012/JudgeOnline/problemset.php?page=13 题号为2221-2224. 1.car 边界 ...

随机推荐

  1. C#线程通信与异步委托

    线程的通知机制 AutoResetEvent是线程实现通知操作的重要方法.通常,AutoResetEvent用于通知正在等待线程已发生事件,允许线程通过发信号互相通信. AutoResetEvent时 ...

  2. easy ui datagrid 让某行复选框不能选中

    //百度查找出来的 onLoadSuccess: function(data){//加载完毕后获取所有的checkbox遍历             if (data.rows.length > ...

  3. WinForm 窗体基本属性、公共控件

    一.WinForm:客户端程序制作 - C/S (B/S:服务器端) 它是基于.NET Framework框架上运行,不是必须在windows系统上才能运行---------------------- ...

  4. 转载:手机网页制作的认识(有关meta标签)

    下面是手机网页的一些认识: 一.<meta name="viewport" id="viewport" content="width=devic ...

  5. Windows Store App 网络通信 HttpWebRequest

    如果希望更好地控制HTTP请求,可以使用System.Net类库中的HttpWebRequest类,该类对HTTP协议进行了完整的封装,并且提供了很多对HTTP协议中的 Header.Content和 ...

  6. NetworkComms V3 使用Json序列化器进行网络通信

    刚才在网上闲逛,偶然看到一篇文章 C#(服务器)与Java(客户端)通过Socket传递对象 网址是:http://www.cnblogs.com/iyangyuan/archive/2012/12/ ...

  7. Spring Boot中的注解

    文章来源:http://www.tuicool.com/articles/bQnMra 在Spring Boot中几乎可以完全弃用xml配置文件,本文的主题是分析常用的注解. Spring最开始是为了 ...

  8. 如何更换centos6源

    1.wget http://mirrors.163.com/.help/CentOS6-Base-163.repo 2.根据教程:http://mirrors.163.com/.help/centos ...

  9. 【 2013 Multi-University Training Contest 8 】

    HDU 4678 Mine 对于每个空白区域,求SG值. 最后异或起来等于0,先手必败. #pragma comment(linker,"/STACK:102400000,102400000 ...

  10. Linux Mint 17使用小结

    用过蛮多的linux系统 linux mint是我比较喜欢和常用的一个系统,装的是linux mint xfce 64位版本,在这里记录使用中遇到的一些问题及解决的方法,备忘,方便以后查看. 1.首先 ...