前面分别介绍了拓扑排序的C和C++实现,本文通过Java实现拓扑排序。

目录
1. 拓扑排序介绍
2. 拓扑排序的算法图解
3. 拓扑排序的代码说明
4. 拓扑排序的完整源码和测试程序

转载请注明出处:http://www.cnblogs.com/skywang12345/

更多内容:数据结构与算法系列 目录

拓扑排序介绍

拓扑排序(Topological Order)是指,将一个有向无环图(Directed Acyclic Graph简称DAG)进行排序进而得到一个有序的线性序列。

这样说,可能理解起来比较抽象。下面通过简单的例子进行说明!
例如,一个项目包括A、B、C、D四个子部分来完成,并且A依赖于B和D,C依赖于D。现在要制定一个计划,写出A、B、C、D的执行顺序。这时,就可以利用到拓扑排序,它就是用来确定事物发生的顺序的。

在拓扑排序中,如果存在一条从顶点A到顶点B的路径,那么在排序结果中B出现在A的后面。

拓扑排序的算法图解

拓扑排序算法的基本步骤:

1. 构造一个队列Q(queue) 和 拓扑排序的结果队列T(topological);
2. 把所有没有依赖顶点的节点放入Q;
3. 当Q还有顶点的时候,执行下面步骤:
3.1 从Q中取出一个顶点n(将n从Q中删掉),并放入T(将n加入到结果集中);
3.2 对n每一个邻接点m(n是起点,m是终点);
3.2.1 去掉边<n,m>;
3.2.2 如果m没有依赖顶点,则把m放入Q;
注:顶点A没有依赖顶点,是指不存在以A为终点的边。

以上图为例,来对拓扑排序进行演示。

第1步:将B和C加入到排序结果中。
    顶点B和顶点C都是没有依赖顶点,因此将C和C加入到结果集T中。假设ABCDEFG按顺序存储,因此先访问B,再访问C。访问B之后,去掉边<B,A>和<B,D>,并将A和D加入到队列Q中。同样的,去掉边<C,F>和<C,G>,并将F和G加入到Q中。
    (01) 将B加入到排序结果中,然后去掉边<B,A>和<B,D>;此时,由于A和D没有依赖顶点,因此并将A和D加入到队列Q中。
    (02) 将C加入到排序结果中,然后去掉边<C,F>和<C,G>;此时,由于F有依赖顶点D,G有依赖顶点A,因此不对F和G进行处理。
第2步:将A,D依次加入到排序结果中。
    第1步访问之后,A,D都是没有依赖顶点的,根据存储顺序,先访问A,然后访问D。访问之后,删除顶点A和顶点D的出边。
第3步:将E,F,G依次加入到排序结果中。

因此访问顺序是:B -> C -> A -> D -> E -> F -> G

拓扑排序的代码说明

拓扑排序是对有向无向图的排序。下面以邻接表实现的有向图来对拓扑排序进行说明。

1. 基本定义

public class ListDG {
// 邻接表中表对应的链表的顶点
private class ENode {
int ivex; // 该边所指向的顶点的位置
ENode nextEdge; // 指向下一条弧的指针
} // 邻接表中表的顶点
private class VNode {
char data; // 顶点信息
ENode firstEdge; // 指向第一条依附该顶点的弧
}; private VNode[] mVexs; // 顶点数组 ...
}

(01) ListDG是邻接表对应的结构体。 mVexs则是保存顶点信息的一维数组。
(02) VNode是邻接表顶点对应的结构体。 data是顶点所包含的数据,而firstEdge是该顶点所包含链表的表头指针。
(03) ENode是邻接表顶点所包含的链表的节点对应的结构体。 ivex是该节点所对应的顶点在vexs中的索引,而nextEdge是指向下一个节点的。

2. 拓扑排序

/*
* 拓扑排序
*
* 返回值:
* -1 -- 失败(由于内存不足等原因导致)
* 0 -- 成功排序,并输入结果
* 1 -- 失败(该有向图是有环的)
*/
public int topologicalSort() {
int index = 0;
int num = mVexs.size();
int[] ins; // 入度数组
char[] tops; // 拓扑排序结果数组,记录每个节点的排序后的序号。
Queue<Integer> queue; // 辅组队列 ins = new int[num];
tops = new char[num];
queue = new LinkedList<Integer>(); // 统计每个顶点的入度数
for(int i = 0; i < num; i++) { ENode node = mVexs.get(i).firstEdge;
while (node != null) {
ins[node.ivex]++;
node = node.nextEdge;
}
} // 将所有入度为0的顶点入队列
for(int i = 0; i < num; i ++)
if(ins[i] == 0)
queue.offer(i); // 入队列 while (!queue.isEmpty()) { // 队列非空
int j = queue.poll().intValue(); // 出队列。j是顶点的序号
tops[index++] = mVexs.get(j).data; // 将该顶点添加到tops中,tops是排序结果
ENode node = mVexs.get(j).firstEdge;// 获取以该顶点为起点的出边队列 // 将与"node"关联的节点的入度减1;
// 若减1之后,该节点的入度为0;则将该节点添加到队列中。
while(node != null) {
// 将节点(序号为node.ivex)的入度减1。
ins[node.ivex]--;
// 若节点的入度为0,则将其"入队列"
if( ins[node.ivex] == 0)
queue.offer(node.ivex); // 入队列 node = node.nextEdge;
}
} if(index != num) {
System.out.printf("Graph has a cycle\n");
return 1;
} // 打印拓扑排序结果
System.out.printf("== TopSort: ");
for(int i = 0; i < num; i ++)
System.out.printf("%c ", tops[i]);
System.out.printf("\n"); return 0;
}

说明:
(01) queue的作用就是用来存储没有依赖顶点的顶点。它与前面所说的Q相对应。
(02) tops的作用就是用来存储排序结果。它与前面所说的T相对应。

拓扑排序的完整源码和测试程序

拓扑排序源码(ListDG.java)

拓扑排序(三)之 Java详解的更多相关文章

  1. 拓扑排序(二)之 C++详解

    本章是通过C++实现拓扑排序. 目录 1. 拓扑排序介绍 2. 拓扑排序的算法图解 3. 拓扑排序的代码说明 4. 拓扑排序的完整源码和测试程序 转载请注明出处:http://www.cnblogs. ...

  2. Prim算法(三)之 Java详解

    前面分别通过C和C++实现了普里姆,本文介绍普里姆的Java实现. 目录 1. 普里姆算法介绍 2. 普里姆算法图解 3. 普里姆算法的代码说明 4. 普里姆算法的源码 转载请注明出处:http:// ...

  3. Kruskal算法(三)之 Java详解

    前面分别通过C和C++实现了克鲁斯卡尔,本文介绍克鲁斯卡尔的Java实现. 目录 1. 最小生成树 2. 克鲁斯卡尔算法介绍 3. 克鲁斯卡尔算法图解 4. 克鲁斯卡尔算法分析 5. 克鲁斯卡尔算法的 ...

  4. Floyd算法(三)之 Java详解

    前面分别通过C和C++实现了弗洛伊德算法,本文介绍弗洛伊德算法的Java实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3. 弗洛伊德算法的代码说明 4. 弗洛伊德算法的源码 转载请注明 ...

  5. 邻接表有向图(三)之 Java详解

    前面分别介绍了邻接表有向图的C和C++实现,本文通过Java实现邻接表有向图. 目录 1. 邻接表有向图的介绍 2. 邻接表有向图的代码说明 3. 邻接表有向图的完整源码 转载请注明出处:http:/ ...

  6. 邻接矩阵有向图(三)之 Java详解

    前面分别介绍了邻接矩阵有向图的C和C++实现,本文通过Java实现邻接矩阵有向图. 目录 1. 邻接矩阵有向图的介绍 2. 邻接矩阵有向图的代码说明 3. 邻接矩阵有向图的完整源码 转载请注明出处:h ...

  7. 邻接表无向图(三)之 Java详解

    前面分别介绍了邻接表无向图的C和C++实现,本文通过Java实现邻接表无向图. 目录 1. 邻接表无向图的介绍 2. 邻接表无向图的代码说明 3. 邻接表无向图的完整源码 转载请注明出处:http:/ ...

  8. 邻接矩阵无向图(三)之 Java详解

    前面分别介绍了邻接矩阵无向图的C和C++实现,本文通过Java实现邻接矩阵无向图. 目录 1. 邻接矩阵无向图的介绍 2. 邻接矩阵无向图的代码说明 3. 邻接矩阵无向图的完整源码 转载请注明出处:h ...

  9. 哈夫曼树(三)之 Java详解

    前面分别通过C和C++实现了哈夫曼树,本章给出哈夫曼树的java版本. 目录 1. 哈夫曼树的介绍 2. 哈夫曼树的图文解析 3. 哈夫曼树的基本操作 4. 哈夫曼树的完整源码 转载请注明出处:htt ...

随机推荐

  1. 安装 webpack

    安装 webpack看好webpack 对自动压缩和文件名自动md5更名,可解决客户端缓存问题.我的安装环境为 centos linux,root用户 1.安装Node及NPM.到NodeJS官网安装 ...

  2. Android 抗锯齿的两种方法

    Android 抗锯齿的两种方法 (其一:paint.setAntiAlias(ture);paint.setBitmapFilter(true))   在Android中,目前,我知道有两种出现锯齿 ...

  3. 对文本行进行排序,新增-d(目录排序),只对字母数字空格排序(TCPL 练习5-16)

    文本行的排序用到了命令行参数以及多级指针,在要求只对字母数字空格进行排序时,关键的问题点是兼容-f命令参数,也就是排序的同时忽略大小写.由于在之前的练习中,我将忽略大小写的比较方法重新写了一个函数tr ...

  4. PPC MPC85xx e500学习笔记

    powerpc的内存体系结构 E500内核中包含内存管理单元MMU,其包含两个查找表(TLB0 Transaction Lookside Buffer)和TLB1来实现虚拟地址和物理地址的转化,其中T ...

  5. Visual Studio2013(Update4)无法生成依赖项关系图解决方案

    今天为了看别人写的一套框架,就琢磨着有没视图的方式去看别人每个类和方法之间的调用和继承关系.这个时候发现了一个VS2013自带的功能: 带着兴奋的心情小手一抖一点... 我等呀等,等呀等.... 尼玛 ...

  6. highcharts 不显示X轴 Y轴 刻度

    xAxis: { tickWidth:0,        //设置刻度标签宽度 lineColor:'#ffffff',//设置坐标颜色 lineWidth:0,        //设置坐标宽度 la ...

  7. Replication的犄角旮旯(七)-- 一个DDL引发的血案(下)(聊聊logreader的延迟)

    <Replication的犄角旮旯>系列导读 Replication的犄角旮旯(一)--变更订阅端表名的应用场景 Replication的犄角旮旯(二)--寻找订阅端丢失的记录 Repli ...

  8. FFmpeg 2.1 发布

    FFmpeg是一套可以用来记录.转换数字音频.视频,并能将其转化为流的开源计算机程序.它包括了目前领先的音/视频编码库 libavcodec. FFmpeg是在Linux下开发出来的,但它可以在包括W ...

  9. ArcEngine 无法嵌入互操作类型

    说明: 在.net 4.0中,声明 IPoint point = new PointClass();会出现下面这个错误 错误 2 类型"ESRI.ArcGIS.Geometry.PointC ...

  10. OAuth 2.0 授权原理

    出处:http://www.cnblogs.com/neutra/archive/2012/07/26/2609300.html 最近在做第三方接入的,初步定下使用OAuth2协议,花了些时间对OAu ...