很久不写算法了== 写个东西练练手

最长上升子序列

输入n,然后是数组a[ ]的n个元素

输出最长上升子序列的长度

一、最简单的方法复杂度O(n * n)

  1. DP[ i ] 是以a[ i ] 为结尾的最长上升子序列的长度。
  2. DP[ i ] = max{DP[ j ] + 1 | j < i && a[ j ] < a[ i ]}

代码:

 /*
  * =====================================================================================
  *       Filename : LongestIncrSub1.cpp
  *    Description : O(n^2)
  *    Version     : a better Algorithm of O(n^2)
  *        Created : 03/22/14 22:03
  *         Author : Liu Xue Yang (LXY), liuxueyang457@163.com
  *         Motto  : How about today?
  * =====================================================================================
  */
 #include <iostream>
 #include <cstdio>
 #include <climits>
 #include <cstdlib>

 ;
 int dp[MAXN], a[MAXN];
 int n, i, j;

     int
 main ( int argc, char *argv[] )
 {

 #ifndef  ONLINE_JUDGE
     freopen("LongestIncrSub.txt", "r", stdin);
 #endif     /* -----  not ONLINE_JUDGE  ----- */

     while ( ~scanf("%d", &n) ) {

         ; i < n; ++i ) {
             scanf ( "%d", &a[i] );
             dp[i] = INT_MAX;
         }
         ; i < n; ++i ) {
             ; j < n; ++j ) {
                  || dp[j-] < a[i] ) {
                     if ( dp[j] > a[i] ) {
                         dp[j] = a[i];
                     }
                 }
             }
         }
         ;
         ; j >= ; --j ) {
             if ( dp[j] != INT_MAX ) {
                 result = j + ;
                 break;
             }
         }
         printf ( "%d\n", result );
     }
         return EXIT_SUCCESS;
 }                /* ----------  end of function main  ---------- */

二、因为长度相同的几个不同的子序列中,最末位数字最小的在之后比较有优势,所以用DP针对这个最小的末尾元素求解。

DP[ i ] 表示长度为 i + 1的上升子序列中末尾元素的最小值

从前往后扫描数组a[ ],对于每一个元素a[ i ],只需要在DP[ ] 数组中找到应该插入的位置。

if j == 0 || a[ i ] > DP[ j-1 ]

  DP[ j ] = min{ DP[ j ], a[ i ]}

由于对于每个a[ i ] 都要扫描一遍DP[ ] 数组,所以复杂度还是O(n * n)

代码:

 /*
  * =====================================================================================
  *       Filename : LongestIncrSub1.cpp
  *    Description : O(n^2)
  *    Version     : a better Algorithm of O(n^2)
  *        Created : 03/22/14 22:03
  *         Author : Liu Xue Yang (LXY), liuxueyang457@163.com
  *         Motto  : How about today?
  * =====================================================================================
  */
 #include <iostream>
 #include <cstdio>
 #include <climits>
 #include <cstdlib>

 ;
 int dp[MAXN], a[MAXN];
 int n, i, j;

     int
 main ( int argc, char *argv[] )
 {

 #ifndef  ONLINE_JUDGE
     freopen("LongestIncrSub.txt", "r", stdin);
 #endif     /* -----  not ONLINE_JUDGE  ----- */

     while ( ~scanf("%d", &n) ) {

         ; i < n; ++i ) {
             scanf ( "%d", &a[i] );
             dp[i] = INT_MAX;
         }
         ; i < n; ++i ) {
             ; j < n; ++j ) {
                  || dp[j-] < a[i] ) {
                     if ( dp[j] > a[i] ) {
                         dp[j] = a[i];
                     }
                 }
             }
         }
         ;
         ; j >= ; --j ) {
             if ( dp[j] != INT_MAX ) {
                 result = j + ;
                 break;
             }
         }
         printf ( "%d\n", result );
     }
         return EXIT_SUCCESS;
 }                /* ----------  end of function main  ---------- */

三、对于上一个算法,在DP[ ]数组中找a[ i ]元素的插入位置的时候,采用的是线性查找,由于DP[ ]这个数组是有序的,所以可以采用二分,这要复杂度就降到了O(nlogn),可以用STL函数lower_bound用来找第一个大于等于a[ i ]的位置。

代码:

 /*
  * =====================================================================================
  *       Filename : LongestIncrSub2.cpp
  *    Description : A better solution
  *    Version     : algorithm of O(nlogn)
  *        Created : 03/22/14 22:37
  *         Author : Liu Xue Yang (LXY), liuxueyang457@163.com
  *         Motto  : How about today?
  * =====================================================================================
  */
 #include <iostream>
 #include <cstdio>
 #include <cstdlib>
 #include <climits>
 #include <algorithm>
 using namespace std;

 ;
 int a[MAXN], dp[MAXN];
 int i, n, result;

     int
 main ( int argc, char *argv[] )
 {

 #ifndef  ONLINE_JUDGE
     freopen("LongestIncrSub.txt", "r", stdin);
 #endif     /* -----  not ONLINE_JUDGE  ----- */
     while ( ~scanf("%d", &n) ) {
         fill(dp, dp + n, INT_MAX);
         ; i < n; ++i ) {
             scanf ( "%d", &a[i] );
         }
         ; i < n; ++i ) {
             *lower_bound(dp, dp + n, a[i]) = a[i];
         }
         result = lower_bound(dp, dp + n, INT_MAX) - dp;
         printf ( "%d\n", result );
     }

         return EXIT_SUCCESS;
 }                /* ----------  end of function main  ---------- */

Source Code on GitHub

四、如何打印出最长上升子序列呢?

用一个position数组,position[ i ] 表示位置 i 的数字在上升子序列中的位置。也就是,插入dp数组中的位置。

比如

然后在position数组中从后往前找到第一次出现的3对应的a[ i ] = 8,然后接着找第一次出现的2对应的a[ i ] = 3,然后接着找第一次出现的1对应的a[ i ] = 2,最后接着

找第一次出现的0对应的a[ i ] = -7

所以,-7, 2, 3, 8就是最长上升子序列的一个解。这个解是在序列中最后出现的。

代码:

  /*
  * =====================================================================================
  *       Filename : LongestIncrSub2.cpp
  *    Description : A better solution
  *    Version     : algorithm of O(nlogn)
  *        Created : 03/22/14 22:37
  *         Author : Liu Xue Yang (LXY), liuxueyang457@163.com
  *         Motto  : How about today?
  * =====================================================================================
  */
 #include <iostream>
 #include <cstdio>
 #include <cstdlib>
 #include <climits>
 #include <algorithm>
 using namespace std;

 ;
 int a[MAXN], dp[MAXN], position[MAXN], sub[MAXN];
 int i, n, result;

     int
 main ( int argc, char *argv[] )
 {

 #ifndef  ONLINE_JUDGE
 //    freopen("LongestIncrSub.txt", "r", stdin);
 #endif     /* -----  not ONLINE_JUDGE  ----- */
     while ( ~scanf("%d", &n) ) {
         fill(dp, dp + n, INT_MAX);
         ; i < n; ++i ) {
             scanf ( "%d", &a[i] );
         }
         int *tmp;
         ; i < n; ++i ) {
             tmp = lower_bound(dp, dp + n, a[i]);
             position[i] = tmp - dp;
             *tmp = a[i];
         }
         result = lower_bound(dp, dp + n, INT_MAX) - dp;
         printf ( "%d\n", result );
         ;
         ; i >= ; --i ) {
             if ( t == position[i] ) {
                 sub[t] = a[i];
                 --t;
             }
         }
         ; i < result; ++i ) {
             if ( i ) {
                 printf ( " " );
             }
             printf ( "%d", sub[i] );
         }
         printf ( "\n" );
     }

         return EXIT_SUCCESS;
 }                /* ----------  end of function main  ---------- */

所有的代码在git里面

Longest Increasing Subsequence的更多相关文章

  1. [LeetCode] Longest Increasing Subsequence 最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  2. [tem]Longest Increasing Subsequence(LIS)

    Longest Increasing Subsequence(LIS) 一个美丽的名字 非常经典的线性结构dp [朴素]:O(n^2) d(i)=max{0,d(j) :j<i&& ...

  3. [LintCode] Longest Increasing Subsequence 最长递增子序列

    Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...

  4. Leetcode 300 Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  5. [LeetCode] Longest Increasing Subsequence

    Longest Increasing Subsequence Given an unsorted array of integers, find the length of longest incre ...

  6. The Longest Increasing Subsequence (LIS)

    传送门 The task is to find the length of the longest subsequence in a given array of integers such that ...

  7. 300. Longest Increasing Subsequence

    题目: Given an unsorted array of integers, find the length of longest increasing subsequence. For exam ...

  8. SPOJ LIS2 Another Longest Increasing Subsequence Problem 三维偏序最长链 CDQ分治

    Another Longest Increasing Subsequence Problem Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://a ...

  9. leetcode@ [300] Longest Increasing Subsequence (记忆化搜索)

    https://leetcode.com/problems/longest-increasing-subsequence/ Given an unsorted array of integers, f ...

  10. [Leetcode] Binary search, DP--300. Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

随机推荐

  1. 配置Java开发IDE

    http://www.cnblogs.com/feichexia/archive/2012/11/07/Vim_JavaIDE.html

  2. Erlang&RabbitMQ服务安装配置

    RabbitMQ是流行的开源消息队列系统,是AMQP(Advanced Message Queuing Protocol高级消息队列协议)的标准实现,用erlang语言开发.RabbitMQ据说具有良 ...

  3. Themida和Winlicense加壳软件脱壳教程

    (一)Themida和不用license的Winlicense加壳软件就不说了,直接上脚本脱壳. (二)先看看不同版本OEP的一些小特征: Temida2.1.X.X版本之后的OEP特征(2.0.8. ...

  4. range()和xrange()

    range(): range([start,] stop[, step]) 如: range(10) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] range()默认起始点为0 且ra ...

  5. hibernate的一种报错

    Exception in thread "main" java.lang.NoClassDefFoundError: javax/tools/StandardJavaFileMan ...

  6. SQLserver CASE WHEN

    declare @shuzu int set @shuzu=1 select (case @shuzu when '1' then '444' when '2'then '555' end) as ' ...

  7. Three.js入门

    一.前段时候花了些功夫研究了下WebGL,了解了基本实体的实现原理和实现方法,现在回忆就只记得如果要我画个圆形,怀疑都要了我的命(那得画多少个三角形...).功夫不负有心人,今天学习Three.js得 ...

  8. cocos2d-x 3.0 事件分发机制

    在cocos2d-x 3.0中一共有五个事件监听器: 触摸事件(EventListenerTouch) 键盘响应事件 (EventListenerKeyboard) 加速器记录事件(EventList ...

  9. ArcMap计算PolyLine中点VBA

    Dim pGeo As IGeometrySet pGeo = [Shape]Dim pPolyline As IPolylineSet pPolyline = pGeoDim pCurve As I ...

  10. android activity改变另一个activity ui

    android开发之在activity中控制另一个activity的UI更新   转自:http://www.cnblogs.com/ycxyyzw/p/3875544.html 第一种方法: 遇到一 ...