Longest Increasing Subsequence
很久不写算法了== 写个东西练练手
最长上升子序列
输入n,然后是数组a[ ]的n个元素
输出最长上升子序列的长度
一、最简单的方法复杂度O(n * n)
- DP[ i ] 是以a[ i ] 为结尾的最长上升子序列的长度。
- DP[ i ] = max{DP[ j ] + 1 | j < i && a[ j ] < a[ i ]}
代码:
/*
* =====================================================================================
* Filename : LongestIncrSub1.cpp
* Description : O(n^2)
* Version : a better Algorithm of O(n^2)
* Created : 03/22/14 22:03
* Author : Liu Xue Yang (LXY), liuxueyang457@163.com
* Motto : How about today?
* =====================================================================================
*/
#include <iostream>
#include <cstdio>
#include <climits>
#include <cstdlib>
;
int dp[MAXN], a[MAXN];
int n, i, j;
int
main ( int argc, char *argv[] )
{
#ifndef ONLINE_JUDGE
freopen("LongestIncrSub.txt", "r", stdin);
#endif /* ----- not ONLINE_JUDGE ----- */
while ( ~scanf("%d", &n) ) {
; i < n; ++i ) {
scanf ( "%d", &a[i] );
dp[i] = INT_MAX;
}
; i < n; ++i ) {
; j < n; ++j ) {
|| dp[j-] < a[i] ) {
if ( dp[j] > a[i] ) {
dp[j] = a[i];
}
}
}
}
;
; j >= ; --j ) {
if ( dp[j] != INT_MAX ) {
result = j + ;
break;
}
}
printf ( "%d\n", result );
}
return EXIT_SUCCESS;
} /* ---------- end of function main ---------- */
二、因为长度相同的几个不同的子序列中,最末位数字最小的在之后比较有优势,所以用DP针对这个最小的末尾元素求解。
DP[ i ] 表示长度为 i + 1的上升子序列中末尾元素的最小值
从前往后扫描数组a[ ],对于每一个元素a[ i ],只需要在DP[ ] 数组中找到应该插入的位置。
if j == 0 || a[ i ] > DP[ j-1 ]
DP[ j ] = min{ DP[ j ], a[ i ]}
由于对于每个a[ i ] 都要扫描一遍DP[ ] 数组,所以复杂度还是O(n * n)
代码:
/*
* =====================================================================================
* Filename : LongestIncrSub1.cpp
* Description : O(n^2)
* Version : a better Algorithm of O(n^2)
* Created : 03/22/14 22:03
* Author : Liu Xue Yang (LXY), liuxueyang457@163.com
* Motto : How about today?
* =====================================================================================
*/
#include <iostream>
#include <cstdio>
#include <climits>
#include <cstdlib>
;
int dp[MAXN], a[MAXN];
int n, i, j;
int
main ( int argc, char *argv[] )
{
#ifndef ONLINE_JUDGE
freopen("LongestIncrSub.txt", "r", stdin);
#endif /* ----- not ONLINE_JUDGE ----- */
while ( ~scanf("%d", &n) ) {
; i < n; ++i ) {
scanf ( "%d", &a[i] );
dp[i] = INT_MAX;
}
; i < n; ++i ) {
; j < n; ++j ) {
|| dp[j-] < a[i] ) {
if ( dp[j] > a[i] ) {
dp[j] = a[i];
}
}
}
}
;
; j >= ; --j ) {
if ( dp[j] != INT_MAX ) {
result = j + ;
break;
}
}
printf ( "%d\n", result );
}
return EXIT_SUCCESS;
} /* ---------- end of function main ---------- */
三、对于上一个算法,在DP[ ]数组中找a[ i ]元素的插入位置的时候,采用的是线性查找,由于DP[ ]这个数组是有序的,所以可以采用二分,这要复杂度就降到了O(nlogn),可以用STL函数lower_bound用来找第一个大于等于a[ i ]的位置。
代码:
/*
* =====================================================================================
* Filename : LongestIncrSub2.cpp
* Description : A better solution
* Version : algorithm of O(nlogn)
* Created : 03/22/14 22:37
* Author : Liu Xue Yang (LXY), liuxueyang457@163.com
* Motto : How about today?
* =====================================================================================
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <climits>
#include <algorithm>
using namespace std;
;
int a[MAXN], dp[MAXN];
int i, n, result;
int
main ( int argc, char *argv[] )
{
#ifndef ONLINE_JUDGE
freopen("LongestIncrSub.txt", "r", stdin);
#endif /* ----- not ONLINE_JUDGE ----- */
while ( ~scanf("%d", &n) ) {
fill(dp, dp + n, INT_MAX);
; i < n; ++i ) {
scanf ( "%d", &a[i] );
}
; i < n; ++i ) {
*lower_bound(dp, dp + n, a[i]) = a[i];
}
result = lower_bound(dp, dp + n, INT_MAX) - dp;
printf ( "%d\n", result );
}
return EXIT_SUCCESS;
} /* ---------- end of function main ---------- */
Source Code on GitHub
四、如何打印出最长上升子序列呢?
用一个position数组,position[ i ] 表示位置 i 的数字在上升子序列中的位置。也就是,插入dp数组中的位置。
比如


然后在position数组中从后往前找到第一次出现的3对应的a[ i ] = 8,然后接着找第一次出现的2对应的a[ i ] = 3,然后接着找第一次出现的1对应的a[ i ] = 2,最后接着
找第一次出现的0对应的a[ i ] = -7
所以,-7, 2, 3, 8就是最长上升子序列的一个解。这个解是在序列中最后出现的。
代码:
/*
* =====================================================================================
* Filename : LongestIncrSub2.cpp
* Description : A better solution
* Version : algorithm of O(nlogn)
* Created : 03/22/14 22:37
* Author : Liu Xue Yang (LXY), liuxueyang457@163.com
* Motto : How about today?
* =====================================================================================
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <climits>
#include <algorithm>
using namespace std;
;
int a[MAXN], dp[MAXN], position[MAXN], sub[MAXN];
int i, n, result;
int
main ( int argc, char *argv[] )
{
#ifndef ONLINE_JUDGE
// freopen("LongestIncrSub.txt", "r", stdin);
#endif /* ----- not ONLINE_JUDGE ----- */
while ( ~scanf("%d", &n) ) {
fill(dp, dp + n, INT_MAX);
; i < n; ++i ) {
scanf ( "%d", &a[i] );
}
int *tmp;
; i < n; ++i ) {
tmp = lower_bound(dp, dp + n, a[i]);
position[i] = tmp - dp;
*tmp = a[i];
}
result = lower_bound(dp, dp + n, INT_MAX) - dp;
printf ( "%d\n", result );
;
; i >= ; --i ) {
if ( t == position[i] ) {
sub[t] = a[i];
--t;
}
}
; i < result; ++i ) {
if ( i ) {
printf ( " " );
}
printf ( "%d", sub[i] );
}
printf ( "\n" );
}
return EXIT_SUCCESS;
} /* ---------- end of function main ---------- */
所有的代码在git里面
Longest Increasing Subsequence的更多相关文章
- [LeetCode] Longest Increasing Subsequence 最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- [tem]Longest Increasing Subsequence(LIS)
Longest Increasing Subsequence(LIS) 一个美丽的名字 非常经典的线性结构dp [朴素]:O(n^2) d(i)=max{0,d(j) :j<i&& ...
- [LintCode] Longest Increasing Subsequence 最长递增子序列
Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...
- Leetcode 300 Longest Increasing Subsequence
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- [LeetCode] Longest Increasing Subsequence
Longest Increasing Subsequence Given an unsorted array of integers, find the length of longest incre ...
- The Longest Increasing Subsequence (LIS)
传送门 The task is to find the length of the longest subsequence in a given array of integers such that ...
- 300. Longest Increasing Subsequence
题目: Given an unsorted array of integers, find the length of longest increasing subsequence. For exam ...
- SPOJ LIS2 Another Longest Increasing Subsequence Problem 三维偏序最长链 CDQ分治
Another Longest Increasing Subsequence Problem Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://a ...
- leetcode@ [300] Longest Increasing Subsequence (记忆化搜索)
https://leetcode.com/problems/longest-increasing-subsequence/ Given an unsorted array of integers, f ...
- [Leetcode] Binary search, DP--300. Longest Increasing Subsequence
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
随机推荐
- Tomcat容器虚拟路径设置
1.[官方文档]在tomcat\conf下server.xml中找到 <Host name="localhost" appBase="webapps" u ...
- 当在浏览器输入一个url访问后发生了什么
首先根据DNS获取该url的ip地址,ip地址的获取可能通过本地缓存,路由缓存等得到. 然后在网络层通过路由选择查找一条可达路径,最后利用tcp/ip协议来进行数据的传输. 其中在传输层将信息添加源端 ...
- git学习心得总结
最近学习git,应为git可以不需要服务器而在任意的Linux机器上管理代码,相对svn和cvs还是有它的优势的,所以我选用了git来管理我的小项目,以后在提供svn的管理. 在使用了一段时间后想写一 ...
- AFN断点续传思路
- Android开源框架:NineOldAndroid
在android3.0以前的版本,要实现动画,一般是使用NineOldAndroid开源框架,之后,就可以直接使用android提供的animation API了. 仔细看过此开源框架后,可看出此框架 ...
- cocos2dx 中使用的一些C++ 11 特性
0. placeholder 头文件:<functional> namespace: placeholder placeholder 就是一堆帮助bind占参数位置的东西,名字分别为 _ ...
- Android Soap实例
// 指定命名空间 private static final String NAMESPACE = "http://WebXml.com.cn/"; // 给出接口地址 priva ...
- Socket通信代码(原理)
1.运行环境:NetBeans IDE 6.0.1 2.说明:先运行服务器端,再运行客户端. 3.服务器端代码: 新建java类Test import java.net.*; import java. ...
- 写简单游戏,学编程语言-python篇
好吧, 首先得承认这个题目写的夸大了,人才菜鸟一枚,游戏相关编程也是知道点概念.但是本人对游戏开发比较感兴趣,相信大多数喜欢玩玩游戏,因为它给人确实带来很多乐趣,而编程语言的学习最少对于我来说比较乏味 ...
- ASP.NET MVC3的学习
ASP.NET MVC第一次课(2013-12-25晚学完) 1.ASP.NET MVC 的特点 分离任务 可扩展 强大的URL重写(路由)机制 ...