LintCode Minimum Path Sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Notice
You can only move either down or right at any point in time!
Dynamic programming is ultilized to solve this problem.
First of all, define another matrix which has same dimension for both x and y. And let us define the number stored in the array stand for the minimum summation of all the path to the position with same x and y in grid matrix.
Then the sum[i][j] = min(sum[i-1][j],sum[i][j-1]) + grid[i][j];
Initialize the sum[0][0] = grid [0][0]; initialize the two boundaries with all the summation of previous path to that certain node.
Solve sum[m-1][n-1]
public class Solution {
/**
* @param grid: a list of lists of integers.
* @return: An integer, minimizes the sum of all numbers along its path
*/
public int minPathSum(int[][] grid) {
// write your code here
if (grid == null || grid.length ==0 || grid[0].length == 0) {
return 0;
}
int m = grid.length;
int n = grid[0].length;
for(int i = 1; i < m; i++) {
grid[i][0] = grid[i-1][0] + grid[i][0];
}
for(int i = 1; i < n; i++) {
grid[0][i] = grid[0][i-1] + grid[0][i];
}
for(int i= 1; i < m; i ++) {
for (int j =1; j < n; j++) {
grid[i][j] = Math.min(grid[i-1][j],grid[i][j-1]) + grid[i][j];
}
}
return grid[m-1][n-1];
}
}
LintCode Minimum Path Sum的更多相关文章
- 【leetcode】Minimum Path Sum
Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to b ...
- leecode 每日解题思路 64 Minimum Path Sum
题目描述: 题目链接:64 Minimum Path Sum 问题是要求在一个全为正整数的 m X n 的矩阵中, 取一条从左上为起点, 走到右下为重点的路径, (前进方向只能向左或者向右),求一条所 ...
- 【LeetCode练习题】Minimum Path Sum
Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to b ...
- LeetCode之“动态规划”:Minimum Path Sum && Unique Paths && Unique Paths II
之所以将这三道题放在一起,是因为这三道题非常类似. 1. Minimum Path Sum 题目链接 题目要求: Given a m x n grid filled with non-negative ...
- LeetCode: Minimum Path Sum 解题报告
Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to b ...
- [LeetCode] Unique Paths && Unique Paths II && Minimum Path Sum (动态规划之 Matrix DP )
Unique Paths https://oj.leetcode.com/problems/unique-paths/ A robot is located at the top-left corne ...
- 【LeetCode】64. Minimum Path Sum
Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to b ...
- 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance
引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...
- [Leetcode Week9]Minimum Path Sum
Minimum Path Sum 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/minimum-path-sum/description/ Descr ...
随机推荐
- page object
http://www.51testing.com/html/76/316176-849962.html
- AJAX格式
var xmlHttp;function getXmlHttp(){ if(window.ActiveXObject){ xmlHttp = new ActiveXObject("MICRO ...
- 工作中用到的oracle字符串分割整理
oracle部分: 定义类型(用于字符串分割): create or replace TYPE "STR_SPLIT" IS TABLE OF VARCHAR2 (4000); 字 ...
- Android studio 项目的layout的文件打开,preview 视图无法显示,提示“no sdk found...”可能原因?
1.安装android studio后启动,引导新的下载的sdk文件夹,不要默认在c:\users\你的用户名\appdata...下的sdk文件夹. 2.如果已经默认的,重新在settings/pr ...
- While循环
package ForType; public class ForType { /** * @param args */ public static void main(String[] args) ...
- Spark-1.5.1 on CDH-5.4.7
1.修改拷贝/root/spark-1.5.1-bin-hadoop2.6/conf下面spark-env.sh.template到spark-env.sh,并添加设置HADOOP_CONF_DIR: ...
- 在 ASP.NET 中创建数据访问和业务逻辑层(转)
.NET Framework 4 当在 ASP.NET 中处理数据时,可从使用通用软件模式中受益.其中一种模式是将数据访问代码与控制数据访问或提供其他业务规则的业务逻辑代码分开.在此模式中,这两个层均 ...
- java读取大文件
1 多线程 2 java内存映射读取大文件
- IE6不支持min-height或max-width等完美解决方法
又是IE6!!!坑人的IE6,不支持min-height,但是实际操作中,这个属性是非常需要的.那IE6下面怎么实现呢?请看geniusalien提供的完美解决方案:(geniusalien温馨提示: ...
- python 类、对象、方法、属性
在python中,一个对象的特征也称为属性(attribute).它所具有的行为也称为方法(method) 结论:对象=属性+方法 在python中,把具有相同属性和方法的对象归为一个类(class) ...