第一次用卷积,看的别人的模型跑的CIFAR-10,不过吐槽一下。。。我觉着我的965m加速之后比我的cpu算起来没快多少。。正确率64%的样子,没达到模型里说的75%,不知道问题出在哪里

import numpy as np
import os
import mxnet as mx
import logging
import cPickle def unpickle(file):
with open(file,'rb') as fo:
dict = cPickle.load(fo)
return np.array(dict['data']).reshape(10000,3072),np.array(dict['labels']).reshape(10000) def to4d(img):
return img.reshape(img.shape[0],3,32,32).astype(np.float32)/255 def fit(batch_num,model,val_iter,batch_size):
(train_img, train_lbl) = unpickle('cifar-10/data_batch_'+str(batch_num))
train_iter = mx.io.NDArrayIter(to4d(train_img), train_lbl, batch_size, shuffle=True)
model.fit(
X=train_iter,
eval_data=val_iter,
batch_end_callback=mx.callback.Speedometer(batch_size,200)
) (val_img, val_lbl) = unpickle('cifar-10/test_batch') batch_size = 100
val_iter = mx.io.NDArrayIter(to4d(val_img),val_lbl,batch_size) data = mx.sym.Variable('data')
cv1 = mx.sym.Convolution(data=data,name='cv1',num_filter=32,kernel=(3,3))
act1 = mx.sym.Activation(data=cv1,name='relu1',act_type='relu')
poing1 = mx.sym.Pooling(data=act1,name='poing1',kernel=(2,2),pool_type='max')
do1 = mx.sym.Dropout(data=poing1,name='do1',p=0.25)
cv2 = mx.sym.Convolution(data=do1,name='cv2',num_filter=32,kernel=(3,3))
act2 = mx.sym.Activation(data=cv2,name='relu2',act_type='relu')
poing2 = mx.sym.Pooling(data=act2,name='poing2',kernel=(2,2),pool_type='avg')
do2 = mx.sym.Dropout(data=poing2,name='do2',p=0.25)
cv3 = mx.sym.Convolution(data=do2,name='cv3',num_filter=64,kernel=(3,3))
act3 = mx.sym.Activation(data=cv3,name='relu3',act_type='relu')
poing3 = mx.sym.Pooling(data=act3,name='poing3',kernel=(2,2),pool_type='avg')
do3 = mx.sym.Dropout(data=poing3,name='do3',p=0.25)
data = mx.sym.Flatten(data=do3)
fc1 = mx.sym.FullyConnected(data=data,name='fc1',num_hidden=64)
act4 = mx.sym.Activation(data=fc1,name='relu4',act_type='relu')
do4 = mx.sym.Dropout(data=act4,name='do4',p=0.25)
fc2 = mx.sym.FullyConnected(data=do4,name='fc2',num_hidden=10)
mlp = mx.sym.SoftmaxOutput(data=fc2,name='softmax') logging.getLogger().setLevel(logging.DEBUG) model = mx.model.FeedForward(
ctx=mx.gpu(0),
symbol=mlp,
num_epoch=10,
learning_rate=0.1
)
for batch_num in range(1,6):
fit(batch_num, model, val_iter, batch_size)

MXNet学习~试用卷积~跑CIFAR-10的更多相关文章

  1. MXNet学习:试用卷积-训练CIFAR-10数据集

    第一次用卷积,看的别人的模型跑的CIFAR-10,不过吐槽一下...我觉着我的965m加速之后比我的cpu算起来没快多少..正确率64%的样子,没达到模型里说的75%,不知道问题出在哪里 import ...

  2. Keras学习:试用卷积-训练CIFAR-10数据集

    import numpy as np import cPickle import keras as ks from keras.layers import Dense, Activation, Fla ...

  3. 【翻译】TensorFlow卷积神经网络识别CIFAR 10Convolutional Neural Network (CNN)| CIFAR 10 TensorFlow

    原网址:https://data-flair.training/blogs/cnn-tensorflow-cifar-10/ by DataFlair Team · Published May 21, ...

  4. 深度学习之卷积神经网络(CNN)的应用-验证码的生成与识别

    验证码的生成与识别 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10755361.html 目录 1.验证码的制 ...

  5. 深度学习之卷积神经网络(CNN)详解与代码实现(二)

    用Tensorflow实现卷积神经网络(CNN) 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10737065. ...

  6. Mxnet学习资源

    MxNet 学习笔记(1):MxNet中的NDArray http://mxnet.incubator.apache.org/api/python/symbol/symbol.html api文档 M ...

  7. 深度学习之卷积神经网络CNN及tensorflow代码实例

    深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分.级数,所以看起来觉得很复杂 ...

  8. 深度学习之卷积神经网络CNN及tensorflow代码实现示例

    深度学习之卷积神经网络CNN及tensorflow代码实现示例 2017年05月01日 13:28:21 cxmscb 阅读数 151413更多 分类专栏: 机器学习 深度学习 机器学习   版权声明 ...

  9. 【神经网络与深度学习】卷积神经网络(CNN)

    [神经网络与深度学习]卷积神经网络(CNN) 标签:[神经网络与深度学习] 实际上前面已经发布过一次,但是这次重新复习了一下,决定再发博一次. 说明:以后的总结,还应该以我的认识进行总结,这样比较符合 ...

  10. PHP学习笔记 - 进阶篇(10)

    PHP学习笔记 - 进阶篇(10) 异常处理 抛出一个异常 从PHP5开始,PHP支持异常处理,异常处理是面向对象一个重要特性,PHP代码中的异常通过throw抛出,异常抛出之后,后面的代码将不会再被 ...

随机推荐

  1. xcode8插件无法使用

    一,xcode8无法使用插件的问题 创建新的XcodeSigner代码证书,并执行"sudo codesign -f -s XcodeSigner /Applications/Xcode.a ...

  2. mysql缓存、存储引擎

    一.         mysql查询缓存 查询缓存不是mysql的子系统,却是查询优化和执行子系统不可缺少的组成部分.它不仅可以缓存查询结果,还可以缓存查询结果本身.如果某个查询的结果就在缓存里, 系 ...

  3. TranslateAnimation参数

    看TranslateAnimation动画参数,一直忘记四个参数意思: public    TranslateAnimation(float fromXDelta, float toXDelta, f ...

  4. js实现两个页面之间跳转参数传递

    html在设计时,规定跳转地址后加"?"表示从此开始为跟随页面地址跳转的参数. 有时候,我们希望获得相应的跳转前页面里的内容,这时候我们就可以考虑将内容以参数形式放到地址中传过来, ...

  5. Strom的配置安装

    1.准备环境 1.1配置列表 配置项 版本信息 OS Red Hat   Enterprise Linux Server release 5.5 (Tikanga) IP 192.168.1.191/ ...

  6. KVM 基本命令

    一.问题描述: KVM中宿主机通过console无法连接客户机,卡在这里不动了. # virsh console vm01 Connected to domain vm01 Escape charac ...

  7. C语言末

    最后一篇C语言的随笔啦,今天考试,感觉脑袋里一片空白,好像失忆了一样,但是不管怎么说,反正已经考完试了,成绩的好坏只能说明你以前的学习情况,不能预测你下一阶段的学习,不管考的怎么样,都已经过去了,考试 ...

  8. .NET Framework基础知识总结

    之前给大家总结了java的面试几次技巧总结,同学们看了觉得还是不错,能够得到大家的认可,感觉还是挺不错的.现在又有同学来想小编索要.NET面试的总结了,好吧.谁让小编这么好呢!以下是.NET面试之框架 ...

  9. FTP提示505错误解决办法

    使用ServerU建FTP服务器时,选定了锁定主文件夹,不选即可解决问题.

  10. Blog 公用部分结构与class定义

    /*博客文章公用部分class与结构 common*/ /* 1.title-block //标题块 ├── border-danger //危险红 ├── border-info //普通蓝 └── ...