Description

    JOI君有N个装在手机上的挂饰,编号为1...N。 JOI君可以将其中的一些装在手机上。
    JOI君的挂饰有一些与众不同——其中的一些挂饰附有可以挂其他挂件的挂钩。每个挂件要么直接挂在手机上,要么挂在其他挂件的挂钩上。直接挂在手机上的挂件最多有1个。
    此外,每个挂件有一个安装时会获得的喜悦值,用一个整数来表示。如果JOI君很讨厌某个挂饰,那么这个挂饰的喜悦值就是一个负数。
    JOI君想要最大化所有挂饰的喜悦值之和。注意不必要将所有的挂钩都挂上挂饰,而且一个都不挂也是可以的。

Input

    第一行一个整数N,代表挂饰的个数。
    接下来N行,第i行(1<=i<=N)有两个空格分隔的整数Ai和Bi,表示挂饰i有Ai个挂钩,安装后会获得Bi的喜悦值。 

Output

    输出一行一个整数,表示手机上连接的挂饰总和的最大值

Solution

与普通背包不同的地方在于,这里背包的容量是动态的,所以用f[i][j]表示前i件物品中,满足还剩j个挂钩空着的最大愉悦值,就解决了背包容量未知的问题,然后状态转移方程的推导与01背包相似,如果不取第i个,最优解就是f[i-1][j],如果取,f[i-1][max(j-a[i],0)+1]+b[i]。因为如果不取这个挂饰,挂钩数就只剩下j-a[i]+1个,但这个表达式的值有可能是一个负数,没有意义,所以要取最差的情况,即舍弃所有挂饰,只剩手机上原来的那个挂钩,也就是1个挂钩。

但是有些时候,j-a[i]+1为负数也可能有意义。因为挂钩的位置没有要求,只要后来的挂钩能把j补成非负数就是合法的,但如果去考虑这个,动规的循环变量就不确定,所以要把挂饰按能提供的挂钩数量从大到小排序,就能避免这种情况。

(参考:http://www.cnblogs.com/2014nhc/p/6231288.html)

Code

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int f[][]; struct rec
{
int a,b;
}x[]; int cmp(const rec&x1,const rec&x2)
{
return x1.a>x2.a;
} int max(int a,int b)
{
return a>b?a:b;
} int main()
{
int n;
scanf("%d",&n);
for (int i=; i<=n; i++)
scanf("%d%d",&x[i].a,&x[i].b);
sort(x+,x+n+,cmp);
memset(f,-,sizeof(f));
f[][]=;
for (int i=; i<=n; i++)
for (int j=; j<=n; j++)
f[i][j]=max(f[i-][j],f[i-][max(j-x[i].a,)+]+x[i].b);
int ans=;
for (int i=; i<=n; i++)
ans=max(ans,f[n][i]);
printf("%d",ans);
return ;
}

Source

http://www.lydsy.com/JudgeOnline/problem.php?id=4247

BZOJ4247挂饰的更多相关文章

  1. [BZOJ4247]挂饰(DP)

    当最终挂饰集合确定了,一定是先挂挂钩多的在挂挂钩少的. 于是按挂钩从大到小排序,然后就是简单的01背包. #include<cstdio> #include<algorithm> ...

  2. bzoj千题计划197:bzoj4247: 挂饰

    http://www.lydsy.com/JudgeOnline/problem.php?id=4247 先把挂饰按挂钩数量从大到小排序 dp[i][j]前i个挂饰,剩下j个挂钩的最大喜悦值 分挂和不 ...

  3. BZOJ4247 : 挂饰

    首先将挂饰按照挂钩个数从大到小排序,然后DP 设f[i][j]处理完前i个挂饰,还有j个多余挂钩的最大喜悦值,则 f[0][1]=0 f[i][j]=max(f[i-1][max(j-a[i],0)+ ...

  4. bzoj4247挂饰——压缩的动态规划

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4247 1.dp之前要先按挂钩个数从大到小排序,不然挂钩一度用成负的也可能是正确的,不仅脚标难 ...

  5. [bzoj4247][挂饰] (动规+排序)

    Description JOI君有N个装在手机上的挂饰,编号为1...N. JOI君可以将其中的一些装在手机上. JOI君的挂饰有一些与众不同——其中的一些挂饰附有可以挂其他挂件的挂钩.每个挂件要么直 ...

  6. bzoj4247: 挂饰(背包dp)

    4247: 挂饰 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1136  Solved: 454[Submit][Status][Discuss] ...

  7. bzoj4247: 挂饰(背包)

    4247: 挂饰 题目:传送门 题解: 看完题目很明显的一道二维背包(一开始还推错了) 设f[i][j]表示前i个挂饰选完(可以有不选)之后还剩下j个挂钩的最大值(j最多贡献为n) 那么f[i][j] ...

  8. BZOJ4247 挂饰(动态规划)

    相当于一个有负体积的背包.显然如果确定了选哪些,应该先把体积小的挂上去.于是按体积从小到大排序,就是一个裸的背包了. #include<iostream> #include<cstd ...

  9. bzoj4247挂饰——DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4247 就是01背包: 把挂钩数限制在n以内,因为不需要更多,而这会带来一些问题,就是有很多挂 ...

随机推荐

  1. php 设计模式

    一.工厂模式 1.创建接口类,规范方法,要实现这个接口的类必须实现这个接口的所有方法,接口的方法默认是抽象的,所以不再方法前面加 abstract interface people{ public f ...

  2. [osx] 查看端口被占用

    netstat命令 netstat -an | grep 3306 3306替换成需要grep的端口号 lsof命令 sudo lsof -i :80 -i参数表示网络链接,:80指明端口号,该命令会 ...

  3. 6.Git内容修改之后的查看和提交

    我们已经成功地添加并提交了一个readme.txt文件,现在,是时候继续工作了,于是,我们继续修改readme.txt文件,改成如下内容: Git is a distributed version c ...

  4. 读取Devexpress内部的图标

    1.图标在Dev源码的存储路径: Sources D.x.u 15.1.3\DevExpress.Images\Images   2.引用DevExpress.Images.v15.1.dll文件,代 ...

  5. Git中pull对比fetch和merge

    本文参考于:http://www.zhanglian2010.cn/2014/07/git-pull-vs-fetch-and-merge/ 使用git fetch和git pull都可以更新远程仓库 ...

  6. VB 中 NumericUpDown 控件 如何为手动输入设定触发事件

    Private Sub numDuration_KeyUp(ByVal sender As Object, ByVal e As System.Windows.Forms.KeyEventArgs) ...

  7. Windows下的Objective-C集成开发环境(IDE)(转)

    Objective-C是苹果软件的编程语言,想要上机学习.调试,有一个集成开发环境(IDE)方便很多.有三类方法搭建Objective-C的集成开发环境: 1)   使用苹果的平台,集成开发环境使用X ...

  8. MVC系列2-Model

    上一篇我讲了ASP.MET MVC的基础概念,我相信从上一篇,我们可以知道MVC的执行过程.这一篇我们开始讲解Model.我们知道,在我们的应用程序中,大多时候是在遵循业务逻辑通过UI操作数据.所以这 ...

  9. iOS_SourceTree忽略CocoaPods文件

    原文作者:iOS_MingXing 原文地址(CSDN):http://blog.csdn.net/ios_mingxing/article/details/51487344 (有更改) 忽略文件内容 ...

  10. C 一些基础

    C语言的几个输入输出函数 #include <stdio.h> getchar(),putchar() scanf(),printf() 1->getchar()与scanf()唯一 ...