• Refer to http://www.tldp.org/HOWTO/SSL-Certificates-HOWTO/x64.html
  • The content

1.2. What is SSL and what are Certificates?

The Secure Socket Layer protocol was created by Netscape to ensure secure transactions between web servers and browsers. The protocol uses a third party, a Certificate Authority (CA), to identify one end or both end of the transactions. This is in short how it works.

  1. A browser requests a secure page (usually https://).

  2. The web server sends its public key with its certificate.

  3. The browser checks that the certificate was issued by a trusted party (usually a trusted root CA), that the certificate is still valid and that the certificate is related to the site contacted.

  4. The browser then uses the public key, to encrypt a random symmetric encryption key and sends it to the server with the encrypted URL required as well as other encrypted http data.

  5. The web server decrypts the symmetric encryption key using its private key and uses the symmetric key to decrypt the URL and http data.

  6. The web server sends back the requested html document and http data encrypted with the symmetric key.

  7. The browser decrypts the http data and html document using the symmetric key and displays the information.

Several concepts have to be understood here.

1.2.1. Private Key/Public Key:

The encryption using a private key/public key pair ensures that the data can be encrypted by one key but can only be decrypted by the other key pair. This is sometime hard to understand, but believe me it works. The keys are similar in nature and can be used alternatively: what one key encrypts, the other key pair can decrypt. The key pair is based on prime numbers and their length in terms of bits ensures the difficulty of being able to decrypt the message without the key pairs. The trick in a key pair is to keep one key secret (the private key) and to distribute the other key (the public key) to everybody. Anybody can send you an encrypted message, that only you will be able to decrypt. You are the only one to have the other key pair, right? In the opposite , you can certify that a message is only coming from you, because you have encrypted it with you private key, and only the associated public key will decrypt it correctly. Beware, in this case the message is not secured you have only signed it. Everybody has the public key, remember!

One of the problem left is to know the public key of your correspondent. Usually you will ask him to send you a non confidential signed message that will contains his publick key as well as a certificate.

Message-->[Public Key]-->Encrypted Message-->[Private Key]-->Message

1.2.2. The Certificate:

How do you know that you are dealing with the right person or rather the right web site. Well, someone has taken great length (if they are serious) to ensure that the web site owners are who they claim to be. This someone, you have to implicitly trust: you have his/her certificate loaded in your browser (a root Certificate). A certificate, contains information about the owner of the certificate, like e-mail address, owner's name, certificate usage, duration of validity, resource location or Distinguished Name (DN) which includes the Common Name (CN) (web site address or e-mail address depending of the usage) and the certificate ID of the person who certifies (signs) this information. It contains also the public key and finally a hash to ensure that the certificate has not been tampered with. As you made the choice to trust the person who signs this certificate, therefore you also trust this certificate. This is a certificate trust tree or certificate path. Usually your browser or application has already loaded the root certificate of well known Certification Authorities (CA) or root CA Certificates. The CA maintains a list of all signed certificates as well as a list of revoked certificates. A certificate is insecure until it is signed, as only a signed certificate cannot be modified. You can sign a certificate using itself, it is called a self signed certificate. All root CA certificates are self signed.

Certificate:
Data:
Version: 3 (0x2)
Serial Number: 1 (0x1)
Signature Algorithm: md5WithRSAEncryption
Issuer: C=FJ, ST=Fiji, L=Suva, O=SOPAC, OU=ICT, CN=SOPAC Root CA/Email=administrator@sopac.org
Validity
Not Before: Nov 20 05:47:44 2001 GMT
Not After : Nov 20 05:47:44 2002 GMT
Subject: C=FJ, ST=Fiji, L=Suva, O=SOPAC, OU=ICT, CN=www.sopac.org/Email=administrator@sopac.org
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)
Modulus (1024 bit):
00:ba:54:2c:ab:88:74:aa:6b:35:a5:a9:c1:d0:5a:
9b:fb:6b:b5:71:bc:ef:d3:ab:15:cc:5b:75:73:36:
b8:01:d1:59:3f:c1:88:c0:33:91:04:f1:bf:1a:b4:
7a:c8:39:c2:89:1f:87:0f:91:19:81:09:46:0c:86:
08:d8:75:c4:6f:5a:98:4a:f9:f8:f7:38:24:fc:bd:
94:24:37:ab:f1:1c:d8:91:ee:fb:1b:9f:88:ba:25:
da:f6:21:7f:04:32:35:17:3d:36:1c:fb:b7:32:9e:
42:af:77:b6:25:1c:59:69:af:be:00:a1:f8:b0:1a:
6c:14:e2:ae:62:e7:6b:30:e9
Exponent: 65537 (0x10001)
X509v3 extensions:
X509v3 Basic Constraints:
CA:FALSE
Netscape Comment:
OpenSSL Generated Certificate
X509v3 Subject Key Identifier:
FE:04:46:ED:A0:15:BE:C1:4B:59:03:F8:2D:0D:ED:2A:E0:ED:F9:2F
X509v3 Authority Key Identifier:
keyid:E6:12:7C:3D:A1:02:E5:BA:1F:DA:9E:37:BE:E3:45:3E:9B:AE:E5:A6
DirName:/C=FJ/ST=Fiji/L=Suva/O=SOPAC/OU=ICT/CN=SOPAC Root CA/Email=administrator@sopac.org
serial:00
Signature Algorithm: md5WithRSAEncryption
34:8d:fb:65:0b:85:5b:e2:44:09:f0:55:31:3b:29:2b:f4:fd:
aa:5f:db:b8:11:1a:c6:ab:33:67:59:c1:04:de:34:df:08:57:
2e:c6:60:dc:f7:d4:e2:f1:73:97:57:23:50:02:63:fc:78:96:
34:b3:ca:c4:1b:c5:4c:c8:16:69:bb:9c:4a:7e:00:19:48:62:
e2:51:ab:3a:fa:fd:88:cd:e0:9d:ef:67:50:da:fe:4b:13:c5:
0c:8c:fc:ad:6e:b5:ee:40:e3:fd:34:10:9f:ad:34:bd:db:06:
ed:09:3d:f2:a6:81:22:63:16:dc:ae:33:0c:70:fd:0a:6c:af:
bc:5a
-----BEGIN CERTIFICATE-----
MIIDoTCCAwqgAwIBAgIBATANBgkqhkiG9w0BAQQFADCBiTELMAkGA1UEBhMCRkox
DTALBgNVBAgTBEZpamkxDTALBgNVBAcTBFN1dmExDjAMBgNVBAoTBVNPUEFDMQww
CgYDVQQLEwNJQ1QxFjAUBgNVBAMTDVNPUEFDIFJvb3QgQ0ExJjAkBgkqhkiG9w0B
CQEWF2FkbWluaXN0cmF0b3JAc29wYWMub3JnMB4XDTAxMTEyMDA1NDc0NFoXDTAy
MTEyMDA1NDc0NFowgYkxCzAJBgNVBAYTAkZKMQ0wCwYDVQQIEwRGaWppMQ0wCwYD
VQQHEwRTdXZhMQ4wDAYDVQQKEwVTT1BBQzEMMAoGA1UECxMDSUNUMRYwFAYDVQQD
Ew13d3cuc29wYWMub3JnMSYwJAYJKoZIhvcNAQkBFhdhZG1pbmlzdHJhdG9yQHNv
cGFjLm9yZzCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAulQsq4h0qms1panB
0Fqb+2u1cbzv06sVzFt1cza4AdFZP8GIwDORBPG/GrR6yDnCiR+HD5EZgQlGDIYI
2HXEb1qYSvn49zgk/L2UJDer8RzYke77G5+IuiXa9iF/BDI1Fz02HPu3Mp5Cr3e2
JRxZaa++AKH4sBpsFOKuYudrMOkCAwEAAaOCARUwggERMAkGA1UdEwQCMAAwLAYJ
YIZIAYb4QgENBB8WHU9wZW5TU0wgR2VuZXJhdGVkIENlcnRpZmljYXRlMB0GA1Ud
DgQWBBT+BEbtoBW+wUtZA/gtDe0q4O35LzCBtgYDVR0jBIGuMIGrgBTmEnw9oQLl
uh/anje+40U+m67lpqGBj6SBjDCBiTELMAkGA1UEBhMCRkoxDTALBgNVBAgTBEZp
amkxDTALBgNVBAcTBFN1dmExDjAMBgNVBAoTBVNPUEFDMQwwCgYDVQQLEwNJQ1Qx
FjAUBgNVBAMTDVNPUEFDIFJvb3QgQ0ExJjAkBgkqhkiG9w0BCQEWF2FkbWluaXN0
cmF0b3JAc29wYWMub3JnggEAMA0GCSqGSIb3DQEBBAUAA4GBADSN+2ULhVviRAnw
VTE7KSv0/apf27gRGsarM2dZwQTeNN8IVy7GYNz31OLxc5dXI1ACY/x4ljSzysQb
xUzIFmm7nEp+ABlIYuJRqzr6/YjN4J3vZ1Da/ksTxQyM/K1ute5A4/00EJ+tNL3b
Bu0JPfKmgSJjFtyuMwxw/Qpsr7xa
-----END CERTIFICATE-----

As You may have noticed, the certificate contains the reference to the issuer, the public key of the owner of this certificate, the dates of validity of this certificate and the signature of the certificate to ensure this certificate hasen't been tampered with. The certificate does not contain the private key as it should never be transmitted in any form whatsoever. This certificate has all the elements to send an encrypted message to the owner (using the public key) or to verify a message signed by the author of this certificate.

1.2.3. The Symmetric key:

Well, Private Key/Public Key encryption algorithms are great, but they are not usually practical. It is asymmetric because you need the other key pair to decrypt. You can't use the same key to encrypt and decrypt. An algorithm using the same key to decrypt and encrypt is deemed to have a symmetric key. A symmetric algorithm is much faster in doing its job than an asymmetric algorithm. But a symmetric key is potentially highly insecure. If the enemy gets hold of the key then you have no more secret information. You must therefore transmit the key to the other party without the enemy getting its hands on it. As you know, nothing is secure on the Internet. The solution is to encapsulate the symmetric key inside a message encrypted with an asymmetric algorithm. You have never transmitted your private key to anybody, then the message encrypted with the public key is secure (relatively secure, nothing is certain except death and taxes). The symmetric key is also chosen randomly, so that if the symmetric secret key is discovered then the next transaction will be totally different.

Symetric Key-->[Public Key]-->Encrypted Symetric Key-->[Private Key]-->Symetric Key

1.2.4. Encryption algorithm:

There are several encryption algorithms available, using symmetric or asymmetric methods, with keys of various lengths. Usually, algorithms cannot be patented, if Henri Poincare had patented his algorithms, then he would have been able to sue Albert Einstein... So algorithms cannot be patented except mainly in USA. OpenSSL is developed in a country where algorithms cannot be patented and where encryption technology is not reserved to state agencies like military and secret services. During the negotiation between browser and web server, the applications will indicate to each other a list of algorithms that can be understood ranked by order of preference. The common preferred algorithm is then chosen. OpenSSL can be compiled with or without certain algorithms, so that it can be used in many countries where restrictions apply.

1.2.5. The Hash:

A hash is a number given by a hash function from a message. This is a one way function, it means that it is impossible to get the original message knowing the hash. However the hash will drastically change even for the slightest modification in the message. It is therefore extremely difficult to modify a message while keeping its original hash. It is also called a message digest. Hash functions are used in password mechanisms, in certifying that applications are original (MD5 sum), and in general in ensuring that any message has not been tampered with. It seems that the Internet Enginering Task Force (IETF) prefers SHA1 over MD5 for a number of technical reasons (Cf RFC2459 7.1.2 and 7.1.3).

1.2.6. Signing:

Signing a message, means authentifying that you have yourself assured the authenticity of the message (most of the time it means you are the author, but not neccesarily). The message can be a text message, or someone else's certificate. To sign a message, you create its hash, and then encrypt the hash with your private key, you then add the encrypted hash and your signed certificate with the message. The recipient will recreate the message hash, decrypts the encrypted hash using your well known public key stored in your signed certificate, check that both hash are equals and finally check the certificate.

The other advantage of signing your messages is that you transmit your public key and certificate automatically to all your recipients.

There are usually 2 ways to sign, encapsulating the text message inside the signature (with delimiters), or encoding the message altogether with the signature. This later form is a very simple encryption form as any software can decrypt it if it can read the embedded public key. The advantage of the first form is that the message is human readable allowing any non complaint client to pass the message as is for the user to read, while the second form does not even allow to read part of the message if it has been tampered with.

1.2.7. PassPhrase:

“A passprase is like a password except it is longer”. In the early days passwords on Unix system were limited to 8 characters, so the term passphrase for longer passwords. Longer is the password harder it is to guess. Nowadays Unix systems use MD5 hashes which have no limitation in length of the password.

1.2.8. Public Key Infrastructure

The Public Key Infrastructure (PKI) is the software management system and database system that allows to sign certifcate, keep a list of revoked certificates, distribute public key,... You can usually access it via a website and/or ldap server. There will be also some people checking that you are who you are... For securing individual applications, you can use any well known commercial PKI as their root CA certificate is most likely to be inside your browser/application. The problem is for securing e-mail, either you get a generic type certificate for your e-mail or you must pay about USD100 a year per certificate/e-mail address. There is also no way to find someone's public key if you have never received a prior e-mail with his certificate (including his public key).

What is SSL and what are Certificates?的更多相关文章

  1. Creating SSL keys, CSRs, self-signed certificates, and .pem files.

    What is the whole darned process? Well that’s a good question. For my purposes, this is what I need ...

  2. startssl,免费的ssl证书申请及注意事项

    免费的ssl证书,https://www.startssl.com/ 安装到IIS和Nginx有所不同.原文 http://blog.newnaw.com/?p=1232 ------------转自 ...

  3. Node.js TLS/SSL

    Stability: 3 - Stable 可以使用 require('tls') 来访问这个模块. tls 模块 使用 OpenSSL 来提供传输层(Transport Layer)安全性和(或)安 ...

  4. 用SSL保Samba安全

    用SSL保Samba安全          在企业中用Samba做为文件服务器是非常容易的事了,那如何保证存储数据的安全,如何保证数据传输的安全呢?我以前介绍过通过Samba安全级别和加装防病毒软件在 ...

  5. OpenResty之ngx.ssl

    翻译自: ngx.ssl - Lua API for controlling NGINX downstream SSL handshakes 1. 概要 # 注意:如果你使用的是 OpenResty ...

  6. squid源码安装下的conf文件默认值和提示

    #    WELCOME TO SQUID 3.0.STABLE26#    ----------------------------##    This is the default Squid c ...

  7. 学习S5

                  rztyfx的专栏       目录视图 摘要视图 订阅 [专家问答]阿里陈康贤:探讨大型网站之架构    走进VR开发世界——我们离开发一款VR大作还有多远?     C ...

  8. WebLogic: The Definitive Guide examined WebLogic's security mechanisms--reference

    reference from: http://www.onjava.com/pub/a/onjava/excerpt/weblogic_chap17/index1.html?page=1 ...... ...

  9. DES/des3 加密程序

    1 #ifndef POLARSSL_DES_H #define POLARSSL_DES_H #define DES_ENCRYPT 1 #define DES_DECRYPT 0 #define ...

随机推荐

  1. asp.net 一般处理程序

    一般处理程序类似公共模块,所有页面都可以调用. 一般处理程序 <%@ WebHandler Language="C#" Class="SetGrid" % ...

  2. ajaxfileupload 传参数

    引用:http://www.cnblogs.com/lyeo/archive/2012/05/11/2496261.html 直接上代码: var data = { name: 'my name', ...

  3. Oracle sql语句执行顺序

    sql语法的分析是从右到左 一.sql语句的执行步骤: 1)词法分析,词法分析阶段是编译过程的第一个阶段.这个阶段的任务是从左到右一个字符一个字符地读入源程序,即对构成源程序的字符流进行扫描然后根据构 ...

  4. Java线程间通信方式剖析——Java进阶(四)

    原创文章,同步发自作者个人博客,转载请在文章开头处以超链接注明出处 http://www.jasongj.com/java/thread_communication/ CountDownLatch C ...

  5. RevMan简单入门指南

    要画个Forest plot啥的,参考 RevMan软件使用 http://wenku.baidu.com/link?url=VY8pCL81K_34xZuW1Z516PrtOVrAbMt8wkIIp ...

  6. get([index])

    get([index]) 概述 取得其中一个匹配的元素. num表示取得第几个匹配的元素.从0开始,返回的是DOM对象,类似的有eq(index),不过eq(index)返回的是jQuery对象. 这 ...

  7. Javascript中bind、call、apply函数用法

    js 里函数调用有 4 种模式:方法调用.正常函数调用.构造器函数调用.apply/call 调用. 同时,无论哪种函数调用除了你声明时定义的形参外,还会自动添加 2 个形参,分别是 this 和ar ...

  8. QT网络编程

    bool QAbstractSocket::waitForReadyRead(int msecs = 30000) bool QAbstractSocket::waitForDisconnected( ...

  9. git github简单知识

    Git 常用命令 git init here -- 创建本地仓库(repository),将会在文件夹下创建一个 .git 文件夹,.git 文件夹里存储了所有的版本信息.标记等内容 git remo ...

  10. RecyclerView的坑

    LinearLayoutManager layoutManager = new LinearLayoutManager(this);recycleView.setLayoutManager(layou ...