softmax的多分类
关于多分类
我们常见的逻辑回归、SVM等常用于解决二分类问题,对于多分类问题,比如识别手写数字,它就需要10个分类,同样也可以用逻辑回归或SVM,只是需要多个二分类来组成多分类,但这里讨论另外一种方式来解决多分类——softmax。
关于softmax
softmax的函数为
P(i)=exp(θTix)∑Kk=1exp(θTkx)
可以看到它有多个值,所有值加起来刚好等于1,每个输出都映射到了0到1区间,可以看成是概率问题。
θTix为多个输入,训练其实就是为了逼近最佳的θT。
如何多分类
从下图看,神经网络中包含了输入层,然后通过两个特征层处理,最后通过softmax分析器就能得到不同条件下的概率,这里需要分成三个类别,最终会得到y=0、y=1、y=2的概率值。
继续看下面的图,三个输入通过softmax后得到一个数组[0.05 , 0.10 , 0.85],这就是soft的功能。
计算过程直接看下图,其中zLi即为θTix,三个输入的值分别为3、1、-3,ez的值为20、2.7、0.05,再分别除以累加和得到最终的概率值,0.88、0.12、0。
代价函数
对于训练集{(x(1),y(1)),...,(x(m),y(m))},有y(i)∈{1,2,3...,k},总共有k个分类。对于每个输入x都会有对应每个类的概率,即p(y=j|x),从向量角度来看,有,
hθ(x(i))=⎡⎣⎢⎢⎢⎢⎢p(y(i)=1|x(i);θ)p(y(i)=2|x(i);θ)⋮p(y(i)=k|x(i);θ)⎤⎦⎥⎥⎥⎥⎥=1∑kj=1eθTj⋅x(i)⎡⎣⎢⎢⎢⎢⎢eθT1⋅x(i)eθT2⋅x(i)⋮eθTk⋅x(i)⎤⎦⎥⎥⎥⎥⎥
softmax的代价函数定为如下,其中包含了示性函数1{j=y(i)},表示如果第i个样本的类别为j则yij=1。代价函数可看成是最大化似然函数,也即是最小化负对数似然函数。
J(θ)=−1m[∑mi=1∑kj=11{y(i)=j}⋅log(p(y(i)=j|x(i);θ))]
其中,p(y(i)=j|x(i);θ)=exp(θTix)∑Kk=1exp(θTkx)则,
J(θ)=−1m[∑mi=1∑kj=11{y(i)=j}⋅(θTjx(i)−log(∑kl=1eθTl⋅x(i)))]
一般使用梯度下降优化算法来最小化代价函数,而其中会涉及到偏导数,即θj:=θj−αδθjJ(θ),则J(θ)对θj求偏导,得到,
∇J(θ)∇θj=−1m∑mi=1[∇∑kj=11{y(i)=j}θTjx(i)∇θj−∇∑kj=11{y(i)=j}log(∑kl=1eθTl⋅x(i)))∇θj]
=−1m∑mi=1[1{y(i)=j}x(i)−∇∑kj=11{y(i)=j}∑kl=1eθTl⋅x(i)∑kl=1eθTl⋅x(i)∇θj]
=−1m∑mi=1[1{y(i)=j}x(i)−x(i)eθTj⋅x(i)∑kl=1eθTl⋅x(i)]
=−1m∑mi=1x(i)[1{y(i)=j}−p(y(i)=j|x(i);θ)]
得到代价函数对参数权重的梯度就可以优化了。
使用场景
在多分类场景中可以用softmax也可以用多个二分类器组合成多分类,比如多个逻辑分类器或SVM分类器等等。该使用softmax还是组合分类器,主要看分类的类别是否互斥,如果互斥则用softmax,如果不是互斥的则使用组合分类器。
========广告时间========
鄙人的新书《Tomcat内核设计剖析》已经在京东销售了,有需要的朋友可以到 https://item.jd.com/12185360.html 进行预定。感谢各位朋友。
=========================
欢迎关注:
softmax的多分类的更多相关文章
- softmax与多分类
sotfmax 函数在机器学习和深度学习中有着广泛的应用, 主要用于多分类问题. softmax 函数 1. 定义 假定数组V,那么第i个元素的softmax值为 也就是该元素的指数 除以 所有元素的 ...
- Softmax回归(Softmax Regression, K分类问题)
Softmax回归:K分类问题, 2分类的logistic回归的推广.其概率表示为: 对于一般训练集: 系统参数为: Softmax回归与Logist ...
- softmax实现cifar10分类
将cifar10改成单一通道后,套用前面的softmax分类,分类率40%左右,想哭... .caret, .dropup > .btn > .caret { border-top-col ...
- 《动手学深度学习》系列笔记—— 1.2 Softmax回归与分类模型
目录 softmax的基本概念 交叉熵损失函数 模型训练和预测 获取Fashion-MNIST训练集和读取数据 get dataset softmax从零开始的实现 获取训练集数据和测试集数据 模型参 ...
- 《转》Logistic回归 多分类问题的推广算法--Softmax回归
转自http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 简介 在本节中,我们介绍Softmax回归模型,该模型是log ...
- Softmax回归——logistic回归模型在多分类问题上的推广
Softmax回归 Contents [hide] 1 简介 2 代价函数 3 Softmax回归模型参数化的特点 4 权重衰减 5 Softmax回归与Logistic 回归的关系 6 Softma ...
- 逻辑回归,多分类推广算法softmax回归中
转自http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 简介 在本节中,我们介绍Softmax回归模型,该模型是log ...
- Softmax回归
Reference: http://ufldl.stanford.edu/wiki/index.php/Softmax_regression http://deeplearning.net/tutor ...
- Softmax回归(Softmax Regression)
转载请注明出处:http://www.cnblogs.com/BYRans/ 多分类问题 在一个多分类问题中,因变量y有k个取值,即.例如在邮件分类问题中,我们要把邮件分为垃圾邮件.个人邮件.工作邮件 ...
随机推荐
- 20145307第9周JAVA学习报告
20145307陈俊达 <Java程序设计>第9周学习总结 教材学习内容总结 JDBC(Java DataBase Connectivity)即java数据库连接,是一种用于执行SQL语句 ...
- 20145327 实验四 Andoid开发基础
20145327 实验四 Andoid开发基础 安装Android Studio 安装过程出现未找到SDK的错误,只需在打开界面找到右下角的设置按钮,将路径设置为如下就可以运行.(默认安装路径) 设计 ...
- 分布式系列 - dubbo服务发布
单元测试OK,封装为Dubbo服务. 添加依赖 pom.xml <properties> <dubbo.version>2.5.3</dubbo.ve ...
- System.IO命名空间下常用的类
System.IO System.IO.Directory 目录 System.IO.Path 文件路径(包含目录和文件名) System.IO.FileInfo 提供创建.复制.删除.移动和打开文件 ...
- vue.js中路由传递参数
知识点:vue路由传递参数,第二个页面(A.B页面)拿到参数,使用参数 方法一:使用 <router-link :to="{name:'edithospital',params:{hi ...
- SQL优化的若干原则
SQL语句:是对数据库(数据)进行操作的惟一途径:消耗了70%~90%的数据库资源:独立于程序设计逻辑,相对于对程序源代码的优化,对SQL语句的优化在时间成本和风险上的代价都很低:可以有不同的写法:易 ...
- Django Nginx配置
1.安装uwsgi.flup.djangowget http://www.saddi.com/software/flup/dist/flup-1.0.2.tar.gz 2.项目创建和配置2.1.创建项 ...
- replace()函数用法
replace()函数表示将用一个字符串替换字符串中的所出现的特定内容. 语法为:replace(字段1,字段2,字段3),意思为字段3将会替换字段1里与字段2相同的内容 列如: table1 st ...
- invocationCount和invocationTimeOut
这篇我们来学习下@Test中另外两个属性invocationCount和invocationTimeOut,前面我介绍了timOut这个属性,知道是超时监控的功能.同样,本篇两个属性和这个差不多,只不 ...
- 在activity之间传递数据
在activity之间传递数据 一.简介 二.通过intent传递数据 1.在需要传数据的界面调用 intent.putExtra("data1", "我是fry&quo ...