Graham扫描法
Graham扫描法求凸包的模板
运行之后可以得到存有凸包顶点的栈s和栈顶指针top,n代表总点数
这个模板我当时调了很久,主要难点有两个,一个是正确的极角排序,一个是出栈入栈的细节操作,逆时针扫描,这里注意栈内元素不能少于三个,新的点在当前线的顺时针方向就出栈,逆时针入栈
这个算法总体来讲还是简单易懂的,不过对于不熟悉计算几何的人来讲用叉乘判断点和线的方向关系这块写起来可能会有点晕,稍微留意一下就好了
const int INF=0xfffffff ;
struct Point{
int x,y ;
} ;
Point p[],s[] ;
int top ;
int direction(Point p1,Point p2,Point p3)
{
return (p3.x-p1.x)*(p2.y-p1.y)-(p2.x-p1.x)*(p3.y-p1.y) ;
}
int dis(Point p1,Point p2)
{
return (p2.x-p1.x)*(p2.x-p1.x)+(p2.y-p1.y)*(p2.y-p1.y) ;
}
int cmp(Point p1,Point p2)//极角排序
{
int temp=direction(p[],p1,p2) ;
if(temp<)return ;
if(temp== && dis(p[],p1)<dis(p[],p2))return ;
return ;
}
void Graham(int n)
{
int pos,minx,miny ;
minx=miny=INF ;
for(int i= ;i<n ;i++)
if(p[i].x<minx || (p[i].x==minx && p[i].y<miny))
{
minx=p[i].x ;
miny=p[i].y ;
pos=i ;
}
swap(p[],p[pos]) ;
sort(p+,p+n,cmp) ;
p[n]=p[] ;
s[]=p[] ;s[]=p[] ;s[]=p[] ;
top= ;
for(int i= ;i<=n ;i++)
{
while(direction(s[top-],s[top],p[i])>= && top>=)top-- ;
s[++top]=p[i] ;
}
}
Graham扫描法的更多相关文章
- 【BZOJ-1670】Building the Moat护城河的挖掘 Graham扫描法 + 凸包
1670: [Usaco2006 Oct]Building the Moat护城河的挖掘 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 464 Solv ...
- 计算几何 : 凸包学习笔记 --- Graham 扫描法
凸包 (只针对二维平面内的凸包) 一.定义 简单的说,在一个二维平面内有n个点的集合S,现在要你选择一个点集C,C中的点构成一个凸多边形G,使得S集合的所有点要么在G内,要么在G上,并且保证这个凸多边 ...
- Graham 扫描法找凸包(convexHull)
凸包定义 通俗的话来解释凸包:给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边型,它能包含点集中所有的点  Graham扫描法 由最底的一点 \(p_1\) 开始(如果有多个这样的点, ...
- 关于graham扫描法求凸包的小记
1.首先,凸包是啥: 若是在二维平面上,则一般的,给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边型,它能包含点集中所有的点. ───────────────────────────── ...
- 凸包算法(Graham扫描法)详解
先说下基础知识,不然不好理解后面的东西 两向量的X乘p1(x1,y1),p2(x2,y2) p1Xp2如果小于零则说明 p1在p2的逆时针方向 如果大于零则说明 p1在p2的顺时针方向 struct ...
- Graham扫描法 --求凸包
前言: 首先,什么是凸包? 假设平面上有p0~p12共13个点,过某些点作一个多边形,使这个多边形能把所有点都“包”起来.当这个多边形是凸多边形的时候,我们就叫它“凸包”.如下图: 然后,什么是凸包 ...
- [hdu contest 2019-07-29] Azshara's deep sea 计算几何 动态规划 区间dp 凸包 graham扫描法
今天hdu的比赛的第一题,凸包+区间dp. 给出n个点m个圆,n<400,m<100,要求找出凸包然后给凸包上的点连线,连线的两个点不能(在凸包上)相邻,连线不能与圆相交或相切,连线不能相 ...
- (模板)poj1113(graham扫描法求凸包)
题目链接:https://vjudge.net/problem/POJ-1113 题意:简化下题意即求凸包的周长+2×PI×r. 思路:用graham求凸包,模板是kuangbin的. AC code ...
- 凸包模板——Graham扫描法
凸包模板--Graham扫描法 First 标签: 数学方法--计算几何 题目:洛谷P2742[模板]二维凸包/[USACO5.1]圈奶牛Fencing the Cows yyb的讲解:https:/ ...
随机推荐
- Painter's Problem
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5378 Accepted: 2601 Description There ...
- git-修改远程的URL
git remote set-url命令修改remote URL git remote set-url传递两个参数 remote name.例如,origin或者upstream new remote ...
- 如何打开linux内核中dev_dbg的开关
比如要打开某个驱动中的dev_dbg,那么需要在驱动文件.c中这些行"<linux/device.h>"或者"<linux /platfom_devic ...
- 8.scala:特质
版权申明:转载请注明出处.文章来源:http://bigdataer.net/?p=317 总体来说,scala中的特质类似于Java中的接口,但是有别于接口的是特质中既可以有实现方法也可以有抽象方法 ...
- hadoop安装时报错 /usr/local/hadoop-2.6.0-stable/hadoop-2.6.0-src/hadoop-hdfs-project/hadoop-hdfs/target/findbugsXml.xml does not exist
安装时报错:Failed to execute goal org.apache.maven.plugins:maven-antrun-plugin:1.7:run (site) on project ...
- LA 3523 圆桌骑士(二分图染色+点双连通分量)
https://vjudge.net/problem/UVALive-3523 题意: 有n个骑士经常举行圆桌会议,商讨大事.每次圆桌会议至少应有3个骑士参加,且相互憎恨的骑士不能坐在圆桌旁的相邻位置 ...
- VS2012 QT5.2.0 无法解析的外部符号
背景:在新建QT工程时,可能没有选择一些库,虽然在头文件中引用了,但是程序依然无法识别 现象:一般出现"LNK2019"错误. 解决:以网络为例,在VS2012中加入网络库,分为两 ...
- Struts2 入门实例
一.最简登录 Demo:login.jsp——web.xml——struts.xml——LoginAction.java——struts.xml——index.jsp 1.下载 Struts2 框架: ...
- js 弹出层,以及在javascript里定义层样式
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- virtual dom & mvvm
虚拟dom 用js对象来表示dom树的结构,然后用这个对象来构建一个真正的dom树插入文档中: 当状态有变时,重新构造一个新的对象树,然后比较新的和旧的树,记录两个数的差异: 把差异部分应用到真正的d ...