题目:http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=1607

题目描述

A number sequence is defined as follows:
 f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 
Given A, B, and n, you are to calculate the value of f(n).

输入

The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.

输出

For each test case, print the value of f(n) on a single line.

示例输入

1 1 3
1 2 10
0 0 0

示例输出

2
5

题目解析:

模板题没什么好说的。

(f[1],f[2])*[ 0,1  ]=(f[2],f[3])

[B, A ]

代码如下:

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
typedef long long ll;
#define inf 0x3f3f3f3f
#define mod 7
#include <math.h>
#include <queue>
using namespace std;
struct ma
{
ll a[][];
} init,res;
int A,B,n;
ma mult(ma x,ma y)
{
ma tmp;
for(int i=; i<; i++)
{
for(int j=; j<; j++)
{
tmp.a[i][j]=;
for(int k=; k<; k++)
{
tmp.a[i][j]=(tmp.a[i][j]+x.a[i][k]*y.a[k][j])%mod;
}
}
}
return tmp;
}
ma Pow(ma x,int K)
{
ma tmp;
for(int i=; i<; i++)
{
for(int j=; j<; j++)
{
tmp.a[i][j]=(i==j);
}
}
while(K)
{
if(K&) tmp=mult(x,tmp);
K>>=;
x=mult(x,x);
}
return tmp;
}
int main()
{
while(scanf("%d%d%d",&A,&B,&n)!=EOF)
{
if(A==&&B==&&n==) break;
if(n==||n==)
{
printf("1\n");
continue;
}
init.a[][]=,init.a[][]=;
init.a[][]=B,init.a[][]=A;
res=Pow(init,(n-));
ll sum=(res.a[][]+res.a[][])%mod;
printf("%lld\n",sum);
}
return ;
}

SDUT1607:Number Sequence(矩阵快速幂)的更多相关文章

  1. UVA - 10689 Yet another Number Sequence 矩阵快速幂

                      Yet another Number Sequence Let’s define another number sequence, given by the foll ...

  2. Yet Another Number Sequence——[矩阵快速幂]

    Description Everyone knows what the Fibonacci sequence is. This sequence can be defined by the recur ...

  3. HDU 1005 Number Sequence(矩阵快速幂,快速幂模板)

    Problem Description A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1 ...

  4. HDU - 1005 Number Sequence 矩阵快速幂

    HDU - 1005 Number Sequence Problem Description A number sequence is defined as follows:f(1) = 1, f(2 ...

  5. HDU - 1005 -Number Sequence(矩阵快速幂系数变式)

    A number sequence is defined as follows:  f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) m ...

  6. Yet another Number Sequence 矩阵快速幂

    Let’s define another number sequence, given by the following function: f(0) = a f(1) = b f(n) = f(n ...

  7. Codeforces 392C Yet Another Number Sequence (矩阵快速幂+二项式展开)

    题意:已知斐波那契数列fib(i) , 给你n 和 k , 求∑fib(i)*ik (1<=i<=n) 思路:不得不说,这道题很有意思,首先我们根据以往得出的一个经验,当我们遇到 X^k ...

  8. CodeForces 392C Yet Another Number Sequence 矩阵快速幂

    题意: \(F_n\)为斐波那契数列,\(F_1=1,F_2=2\). 给定一个\(k\),定义数列\(A_i=F_i \cdot i^k\). 求\(A_1+A_2+ \cdots + A_n\). ...

  9. LightOJ 1065 - Number Sequence 矩阵快速幂水题

    http://www.lightoj.com/volume_showproblem.php?problem=1065 题意:给出递推式f(0) = a, f(1) = b, f(n) = f(n - ...

随机推荐

  1. treegrid-dnd.js

    (function($){ $.extend($.fn.treegrid.defaults, { onBeforeDrag: function(row){}, // return false to d ...

  2. trim() 是什么意思?

    这是一个很常见的函数,他的所用是去掉字符序列左边和右边的空格,如字符串str = " ai lafu yo ";str = trim(str); cout << str ...

  3. JAVA基础之訪问控制权限(封装)

    包:库单元 1.当编写一个Java源码文件时.此文件通常被称为编译单元(有时也被称为转译单元). 2.每一个编译单元都必须有一个后缀名.java,而在编译单元内则能够有一个public类,该类名称必须 ...

  4. BestCoder Round #12 War(计算几何)

    War Time Limit: 8000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  5. 修改Android 界面颜色

    btnGetCode.setTextColor(getResources().getColor(R.color.dark_white)); Color.parseColor("#1a71d4 ...

  6. mybatis总结(三)之多表查询

    上一节,已经把实体类和配置文件都写过了,这节课直接添加几个方法吧 在DeptMapper.xml文件中添加 <!-- 多表查询(1对多) ,通过部门编号,查询出部门所在的员工姓名,部门名,部门编 ...

  7. iOS开发之--MVC 架构模式

    随着项目开发时间的增加,从刚开始那种很随意的代码风格,逐渐会改变,现在就介绍下MVC的架构模式,MVC的架构模式,从字面意思上讲,即:MVC 即 Modal View Controller(模型 视图 ...

  8. logback中MDC使用

    今天在项目发现别人写了很多MDC.put("taskid", "testThread/heart/main_heart");或者MDC.put("ta ...

  9. cocos中lua使用shader实例

    local prog = cc.GLProgram:create("res/shader/light2d.vsh","res/shader/light2d.fsh&quo ...

  10. 华为 进入和退出Fastboot、eRecovery和Recovery升级模式

    手机关机状态下,可以进入Fastboot/eRecovery / Recovery/升级这几种模式: 需要连接电脑:Fastboot模式:长按音量下键+电源键.eRecovery 模式:长按音量上键+ ...