BZOJ4557 JLoi2016 侦察守卫


Description

小R和B神正在玩一款游戏。这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点,且地图是连通的。换句话说,游戏的地图是一棵有N个节点的树。游戏中有一种道具叫做侦查守卫,当一名玩家在一个点上放置侦查守卫后,它可以监视这个点以及与这个点的距离在D以内的所有点。这里两个点之间的距离定义为它们在树上的距离,也就是两个点之间唯一的简单路径上所经过边的条数。在一个点上放置侦查守卫需要付出一定的代价,在不同点放置守卫的代价可能不同。现在小R知道了所有B神可能会出现的位置,请你计算监视所有这些位置的最小代价。

Input

第一行包含两个正整数N和D,分别表示地图上的点数和侦查守卫的视野范围。约定地图上的点用1到N的整数编号。第二行N个正整数,第i个正整数表示在编号为i的点放置侦查守卫的代价Wi。保证Wi≤1000。第三行一个正整数M,表示B神可能出现的点的数量。保证M≤N。第四行M个正整数,分别表示每个B神可能出现的点的编号,从小到大不重复地给出。接下来N–1行,每行包含两个正整数U,V,表示在编号为U的点和编号为V的点之间有一条无向边。N<=500000,D<=20

Output

仅一行一个整数,表示监视所有B神可能出现的点所需要的最小代价

Sample Input

12 2
8 9 12 6 1 1 5 1 4 8 10 6
10
1 2 3 5 6 7 8 9 10 11
1 3
2 3
3 4
4 5
4 6
4 7
7 8
8 9
9 10
10 11
11 12

Sample Output

10


题目大意是给你一棵树上有一些染了色的点
然后你可以选一些点进行标记,一个标记了的点可以覆盖距离它自己不超过d的点
标记每个点有不同的花费
求最小的覆盖所有染色点的花费



#include<bits/stdc++.h>
using namespace std;
#define N 500010
#define D 22
#define INF 0x3f3f3f3f
struct Edge{int v,next;}E[N<<1];
int head[N],tot=0;
int n,m,d,w[N];
int f[N][D],g[N][D],dp[N];
int mark[N];
void add(int u,int v){
E[++tot]=(Edge){v,head[u]};
head[u]=tot;
}
void dfs(int u,int fa){
if(mark[u])f[u][0]=g[u][0]=w[u];
for(int i=1;i<=d;i++)f[u][i]=w[u];
f[u][d+1]=INF;
for(int i=head[u];i;i=E[i].next){
int v=E[i].v;
if(v==fa)continue;
dfs(v,u);
for(int j=d;j>=0;j--)f[u][j]=min(f[u][j]+g[v][j],f[v][j+1]+g[u][j+1]);
for(int j=d;j>=0;j--)f[u][j]=min(f[u][j],f[u][j+1]);
g[u][0]=f[u][0];
for(int j=1;j<=d;j++)g[u][j]+=g[v][j-1];
for(int j=1;j<=d;j++)g[u][j]=min(g[u][j],g[u][j-1]);
}
g[u][d+1]=min(g[u][d+1],g[u][d]);
}
int main(){
scanf("%d%d",&n,&d);
for(int i=1;i<=n;i++)scanf("%d",&w[i]);
scanf("%d",&m);
for(int i=1;i<=m;i++){
int x;scanf("%d",&x);
mark[x]=1;
}
for(int i=1;i<n;i++){
int u,v;scanf("%d%d",&u,&v);
add(u,v);
add(v,u);
}
dfs(1,0);
printf("%d",f[1][0]);
return 0;
}

BZOJ4557 JLoi2016 侦察守卫 【树形DP】*的更多相关文章

  1. [BZOJ4557][JLOI2016]侦察守卫(树形DP)

    首先可以确定是树形DP,但这里存在跨子树的信息传递问题,这里就需要“借”的思想. f[i][j]表示i子树内所有点都被覆盖到,且i以外j层内的点都能被覆盖到 的方案数. g[i][j]表示i子树内离i ...

  2. 【BZOJ4557】[JLoi2016]侦察守卫 树形DP

    [BZOJ4557][JLoi2016]侦察守卫 Description 小R和B神正在玩一款游戏.这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点,且地图是连通的.换句话说,游戏的地 ...

  3. 洛谷 P3267 [JLOI2016/SHOI2016]侦察守卫(树形dp)

    题面 luogu 题解 树形\(dp\) \(f[x][y]表示x的y层以下的所有点都已经覆盖完,还需要覆盖上面的y层的最小代价.\) \(g[x][y]表示x子树中所有点都已经覆盖完,并且x还能向上 ...

  4. BZOJ4557 JLOI2016侦察守卫(树形dp)

    下称放置守卫的点为监控点.设f[i][j]为i子树中深度最大的未被监视点与i的距离不超过j时的最小代价,g[i][j]为i子树中距离i最近的监控点与i的距离不超过j且i子树内点全部被监视时的最小代价. ...

  5. bzoj4557 [JLoi2016]侦察守卫——DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4557 见这位的博客:https://www.cnblogs.com/Narh/p/91403 ...

  6. bzoj千题计划272:bzoj4557: [JLoi2016]侦察守卫

    http://www.lydsy.com/JudgeOnline/problem.php?id=4557 假设当前到了x的子树,现在是合并 x的第k个子树 f[x][j] 表示x的前k-1个子树该覆盖 ...

  7. 洛谷 P3267 - [JLOI2016/SHOI2016]侦察守卫(树形 dp)

    洛谷题面传送门 经典题一道,下次就称这种"覆盖距离不超过 xxx 的树形 dp"为<侦察守卫模型> 我们考虑树形 \(dp\),设 \(f_{x,j}\) 表示钦定了 ...

  8. Luogu3267 [JLOI2016/SHOI2016]侦察守卫 (树形DP)

    树形DP,一脸蒙蔽.看了题解才发现它转移状态与方程真不愧神题! \(f[x][y]\)表示\(x\)的\(y\)层以下的所有点都已经覆盖完,还需要覆盖上面的\(y\)层的最小代价. \(g[x][y] ...

  9. 动态规划(树形DP):LNOI 2016 侦察守卫

    Sample Input 12 2 8 9 12 6 1 1 5 1 4 8 10 6 10 1 2 3 5 6 7 8 9 10 11 1 3 2 3 3 4 4 5 4 6 4 7 7 8 8 9 ...

随机推荐

  1. MySQL MVVC

    什么是MVVC? MVVC (Multi-Version Concurrency Control) (注:与MVCC相对的,是基于锁的并发控制,Lock-Based Concurrency Contr ...

  2. spring mvc: 参数方法名称解析器(用参数来解析控制器下的方法)MultiActionController/ParameterMethodNameResolver/ControllerClassNameHandlerMapping

    spring mvc: 参数方法名称解析器(用参数来解析控制器下的方法)MultiActionController/ParameterMethodNameResolver/ControllerClas ...

  3. 使用Bind读取配置到C#的实例

    在之前的一篇二级域名绑定的文章<.Net Core 二级域名绑定到指定的控制器>中,有一个小的地方是关于读取Json文件的配置信息的,当时是用了读取文件流的方式,一直以来觉得该方法太Low ...

  4. web常见问题排查

    原帖地址:http://mp.weixin.qq.com/s?__biz=MjM5NzUwNDA5MA==&mid=200596752&idx=1&sn=37ecae802f3 ...

  5. ubuntu 16.04 配置远程连接

    1.XDMCP远程连接 vi /usr/share/lightdm/lightdm.conf.d/50-ubuntu.conf 添加 greeter-show-manual-login=true [X ...

  6. 新男人八题---AStringGame

    终于完成进度男人1/8,为了这题学了sam= = 题意先有一个串,n个子串,两个人轮流每次在子串上加字符,要求加完后还是原串的子串,最后不能加的就是输者,求赢的人 解法:sam之后在构造的状态图上跑s ...

  7. Java导出Excel(有数据库导出代码)

    /** * 导出 * @param request * @param response * @throws Exception */ @SuppressWarnings("unchecked ...

  8. Python不同版本切换

    2016年6月8日更新: 这是我早前写的一篇小文章,其实,后来也没有采用这种方法切换.电脑上安装了多个Python 版本,保证自己经常用的版本加入环境变量外,使用非系统的版本时一般使用 IDE 编辑器 ...

  9. asp.net连接MySQL数据库错误-Out of sync with server

    问题 网上说:http://wenda.haosou.com/q/1386389928069965 昨晚这个问题真的费了我不少时间(晚上9到凌晨2点),网上找解决方案,然后一个个尝试,没有成功.准备放 ...

  10. IEnumerable.Select和SelectMany的区别

    例子(一个人可以有多个手机) public class People { public string Name { get; set; } public List<Phone> Phone ...