BZOJ1486 HNOI2009 最小圈


Description


应该算是01分数规划的裸板题了吧。。但是第一次写还是遇到了一些困难,vis数组不清零之类的
假设一个答案成立,那么一定可以找到一个环使得其边权和大于等于边数∗ans。
可以发现答案是具有二分性的,二分出一个临时答案ans′,并且用ans′对每条边进行约束,再用深搜SPFA判断一下负环,如果有负环说明当前解可行,继续二分就好了。
注意题目要求保留到小数点后八位,多开一点二分次数防止精度不够啊


/**************************************************************
Problem: 1486
User: yangkai
Language: C++
Result: Accepted
Time:2292 ms
Memory:1648 kb
****************************************************************/ #include<bits/stdc++.h>
using namespace std;
int read(){
int ans=0,w=1;char c=getchar();
while(c!='-'&&!isdigit(c))c=getchar();
if(c=='-')w=-1,c=getchar();
while(isdigit(c))ans=ans*10+c-'0',c=getchar();
return ans*w;
}
#define N 3010
#define M 10010
#define INFF 10000000
int n,m,tot,head[N];
struct Edge{int v,next;double w;}E[M];
void add(int u,int v,double w){
E[++tot]=(Edge){v,head[u],w};head[u]=tot;
}
int u[M],v[M],vis[N];
double w[M],dis[N];
void build(double val){
for(int i=1;i<=n;i++)head[i]=0;tot=0;
for(int i=1;i<=m;i++)add(u[i],v[i],w[i]-val);
}
bool flag=0;
void SPFA(int x){
vis[x]=1;
for(int i=head[x];i;i=E[i].next){
int y=E[i].v;
if(dis[x]+E[i].w<dis[y]){
if(vis[y]){flag=1;break;}
else{
dis[y]=dis[x]+E[i].w;
SPFA(y);
}
}
}
vis[x]=0;
}
int main(){
n=read();m=read();
for(int i=1;i<=m;i++){
u[i]=read(),v[i]=read();
scanf("%lf",&w[i]);
}
double l=-INFF,r=INFF;
for(int p=1;p<=60;p++){
double mid=(l+r)/2;
build(mid);
flag=0;
for(int i=1;i<=n;i++){
memset(vis,0,sizeof(vis));
memset(dis,0,sizeof(dis));
SPFA(i);
if(flag)break;
}
if(flag)r=mid;
else l=mid;
}
printf("%.8lf",l);
return 0;
}

BZOJ1486 HNOI2009 最小圈 【01分数规划】的更多相关文章

  1. 洛谷P3199 [HNOI2009]最小圈(01分数规划)

    题意 题目链接 Sol 暴力01分数规划可过 标算应该是这个 #include<bits/stdc++.h> #define Pair pair<int, double> #d ...

  2. BZOJ 1486: [HNOI2009]最小圈 [01分数规划]

    裸题...平均权值最小的环.... 注意$dfs-spfa$时$dfs(cl)$...不要写成$dfs(u)$ #include <iostream> #include <cstdi ...

  3. P3199 [HNOI2009]最小圈 01分数规划

    裸题,第二个权值是自己点的个数.二分之后用spfa判负环就行了. 题目描述 考虑带权的有向图G=(V,E)G=(V,E)G=(V,E)以及w:E→Rw:E\rightarrow Rw:E→R,每条边e ...

  4. BZOJ_1486_[HNOI2009]最小圈_01分数规划

    BZOJ_1486_[HNOI2009]最小圈_01分数规划 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 ...

  5. 【BZOJ1486】最小圈(分数规划)

    [BZOJ1486]最小圈(分数规划) 题面 BZOJ 洛谷 求图中边权和除以点数最小的环 题解 分数规划 二分答案之后将边权修改为边权减去二分值 检查有无负环即可 #include<iostr ...

  6. BZOJ 1486 最小圈(01分数规划)

    好像是很normal的01分数规划题.最小比率生成环. u(c)=sigma(E)/k.转化一下就是k*u(c)=sigma(E). sigma(E-u(c))=0. 所以答案对于这个式子是有单调性的 ...

  7. 洛谷4951 地震 bzoj1816扑克牌 洛谷3199最小圈 / 01分数规划

    洛谷4951 地震 #include<iostream> #include<cstdio> #include<algorithm> #define go(i,a,b ...

  8. [HNOI2009]最小圈(分数规划+SPFA判负环)

    题解:求环长比环边个数的最小值,即求min{Σw[i]/|S|},其中i∈S.这题一眼二分,然后可以把边的个数进行转化,假设存在Σw[i]/|S|<=k,则Σw[i]-k|S|<=0,即Σ ...

  9. 【洛谷 P3199】 [HNOI2009]最小圈(分数规划,Spfa)

    题目链接 一开始不理解为什么不能直接用\(Tarjan\)跑出换直接求出最小值,然后想到了"简单环",恍然大悟. 二分答案,把所有边都减去\(mid\),判是否存在负环,存在就\( ...

随机推荐

  1. 【转】学习Python的19个资源

    原文链接:[译]学习Python编程的19个资源 用Python编写代码一点都不难,事实上它一直被赞誉为最容易学的编程语言.如果你准备学习web开发, Python是一个不错的开始,甚至想做游戏的话, ...

  2. http协议报头详解

    目录: 1. http协议简介 2. http报头举例 3. http报头详解 4. 几个字段的说明 5. 总结 6. 参考文章 1. http协议简介 HTTP是Hyper Text Transfe ...

  3. 我的Android学习路线(一)

    最近实在是闲的无聊,本着不能让自己的时间白白流失的目的,我就决定完成一下之前的诺言:把 Android 开发学了.正好手头有一本<Android 4编程入门经典>,于是便用两天时间把视图部 ...

  4. form组件的验证

    django 的form组件可以实现自定义的验证规则. 创建基于Form的类,在类中创建字段,定义规则. 创建该类的对象,并将待验证的数据传入,使用is_valid()函数. is_valid()函数 ...

  5. SQL , MERGE 简意

  6. 25.大白话说java并发工具类-CountDownLatch,CyclicBarrier,Semaphore,Exchanger

    1. 倒计时器CountDownLatch 在多线程协作完成业务功能时,有时候需要等待其他多个线程完成任务之后,主线程才能继续往下执行业务功能,在这种的业务场景下,通常可以使用Thread类的join ...

  7. 十六 web爬虫讲解2—PhantomJS虚拟浏览器+selenium模块操作PhantomJS

    PhantomJS虚拟浏览器 phantomjs 是一个基于js的webkit内核无头浏览器 也就是没有显示界面的浏览器,利用这个软件,可以获取到网址js加载的任何信息,也就是可以获取浏览器异步加载的 ...

  8. nyoj42——连通图加欧拉(连通图板子)dfs

    一笔画问题 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 zyc从小就比较喜欢玩一些小游戏,其中就包括画一笔画,他想请你帮他写一个程序,判断一个图是否能够用一笔画下 ...

  9. restframework api(基础2)

    一 socket简介 1 最简单的socket #################server import socket ip_port = ('127.0.0.1',9997) sk = sock ...

  10. 八、dbms_rls(实现精细访问控制)

    1.概述 本报只适用于Oracle Enterprise Edition,它用于实现精细访问控制,并且精细访问控制是通过在SQL语句中动态增加谓词(WHERE子句)来实现的.通过使用ORACLE的精细 ...