Loj 538 递推数列

出题人:这题提高难度吧.于是放在了%你赛的 \(D1T2\) .

  • 递推式为 \(a_i=k*a_{i-1}+a_{i-2}\) , 注意到 \(k\in \mathbb{N_+}\) ,容易发现一个比较显然的性质:

    若 \(a_i>a_{i-1}\geq 0\) , 或者 \(a_i<a_{i-1}\leq 0\) ,则该数列在第 \(i-1\) 项后单调上升或单调下降.

  • 基于这个性质,一个比较自然的想法是,一直爆算 \(a_i\) ,使得数列 \(a\) 单调后退出,再利用单调性来算答案.

  • 这样搞能得到多少分? \(20?\ 25?\ 30?\) 万一被构造数据卡到很久都进不了单调咋办?

  • 事实上,这样计算可以获得 \(100\) 分的好成绩.借助下面这张图来分析,比例可能不太真实,意会即可.

  • 假定在 \(i=pos\) 处第一次满足 \(a_i>a_{i-1}\geq 0\) 或 \(a_i<a_{i-1}\leq 0\).那么 \(pos-1\) 之前的项都是正负交替出现的.否则若有 \(i<pos-1,0<a_i<a_{i-1}\) ,则 \(a_{i+1}>a_i>0\) , \(i+1<pos\) , 应是第一个找到的 \(pos\) ,矛盾.
  • 那么记 \(b_i=|a_i|\) ,则有 \(\forall\ i\in [2,pos-1),b_i=-kb_{i-2}+b_{i-1}.\),且 \(b\) 单调递减.
  • 移项变形,得 \(b_{i-2}=kb_{i-1}+b_i\geq(k+1)b_i\). 又因 \(k\in \mathbb{N_+}\) ,可得 \(pos\leq 2log_{k+1}|a_0|\) .
  • 类似可以证明单调后在 \(O(loga)\) 个数内,绝对值将超过前面( \(S_1\) 内元素)的绝对值.
  • 于是,整个算法的时间复杂度为 \(O(nloga)\) .实现起来细节比较多.

有时, \(yy\) 出一个做法或许并不难,难的是判断这个做法是否可行...

Loj 538 递推数列的更多相关文章

  1. The Nth Item 南昌网络赛(递推数列,分段打表)

    The Nth Item \[ Time Limit: 1000 ms \quad Memory Limit: 262144 kB \] 题意 给出递推式,求解每次 \(F[n]\) 的值,输出所有 ...

  2. 九度OJ 1081:递推数列 (递归,二分法)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:6194 解决:864 题目描述: 给定a0,a1,以及an=p*a(n-1) + q*a(n-2)中的p,q.这里n >= 2. 求第 ...

  3. HDU4565 So Easy! —— 共轭构造、二阶递推数列、矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-4565 So Easy! Time Limit: 2000/1000 MS (Java/Others)    Memory L ...

  4. 九度OJ 1081 递推数列 -- 矩阵二分乘法

    题目地址:http://ac.jobdu.com/problem.php?pid=1081 题目描述: 给定a0,a1,以及an=p*a(n-1) + q*a(n-2)中的p,q.这里n >= ...

  5. MT【319】分段递推数列

    已知数列$ x_n $满足$ 0<x_1<x_2<\pi $,且\begin{equation*} x_{n+1}= \left\{ \begin{aligned}x_n+\sin ...

  6. MT【311】三角递推数列

    已知数列$\{a_n\}$满足$a_1=\dfrac{1}{2},a_{n+1}=\sin\left(\dfrac{\pi}{2}a_n\right),S_n$ 为$\{a_n\}$的前$n$项和,求 ...

  7. HDU 2842 (递推+矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...

  8. Re.常系数齐次递推

    前言 嗯   我之前的不知道多少天看这个的时候到底在干什么呢 为什么那么..  可能大佬们太强的缘故 最后仔细想想思路那么的emmm 不说了  要落泪了 唔唔唔 前置 多项式求逆 多项式除法/取模 常 ...

  9. [洛谷P4723]【模板】线性递推

    题目大意:求一个满足$k$阶齐次线性递推数列$a_i$的第$n$项. 即:$a_n=\sum\limits_{i=1}^{k}f_i \times a_{n-i}$ 题解:线性齐次递推,先见洛谷题解, ...

随机推荐

  1. Entity Framework 中 Schema是什么

    在使用Entity Framework时,会注意到下面这句: protected override void OnModelCreating(DbModelBuilder modelBuilder) ...

  2. 决策树的剪枝,分类回归树CART

    决策树的剪枝 决策树为什么要剪枝?原因就是避免决策树“过拟合”样本.前面的算法生成的决策树非常的详细而庞大,每个属性都被详细地加以考虑,决策树的树叶节点所覆盖的训练样本都是“纯”的.因此用这个决策树来 ...

  3. 如何将本地的项目上传到git

    如何将本地的项目上传到git 1 进入项目文件夹,把目录变为git仓库 git init 2 把文件添加到版本库中 git add . 3 把版本提交到版本库 git commit -m 'first ...

  4. vue.js学习之组件(上篇)

    本文的Demo和源代码已放到GitHub,如果您觉得本篇内容不错,请点个赞,或在GitHub上加个星星! https://github.com/zwl-jasmine95/Vue_test 以下所有知 ...

  5. bind、delegate、on的区别

    on(type,[data],fn) on有三个参数,type代表事件类型,可以为“click"."onchange"."mouseover" dat ...

  6. HDU6166-求集合间的最短路

    Senior Pan Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Tot ...

  7. Mysql的alter用法

    一.在已有表上创建索引  1.ALTER TABLE <表名> ADD PRIMARY KEY (字段名); ALTER TABLE <表名> DROP PRIMARY KEY ...

  8. el-table实现表格的编辑、删除、以及新增行的方法

    直接上代码: html部分: <el-form :model="inServForm" ref="inServForm" label-width=&quo ...

  9. eureka-8-Eureka 的健康检查

    eureka.client.healthcheck.enabled:true 应用程序将自己的健康状态传播到Eureka Server

  10. 【Sizzle学习】之关于【初探 jQuery 的 Sizzle 选择器】这篇文章里的小bug

    [题记]不可否认,这篇文章写得非常好,但是今天我在看sizzle源码的时候,发现这文章有一地方说的不妥.重现:当selectors为"p.class1>p.class2",j ...