1.Feature Normalization:

归一化的处理

function [X_norm, mu, sigma] = featureNormalize(X)
%FEATURENORMALIZE Normalizes the features in X
% FEATURENORMALIZE(X) returns a normalized version of X where
% the mean value of each feature is 0 and the standard deviation
% is 1. This is often a good preprocessing step to do when
% working with learning algorithms. % You need to set these values correctly
X_norm = X;
mu = zeros(1, size(X, 2));
sigma = zeros(1, size(X, 2)); % ====================== YOUR CODE HERE ======================
% Instructions: First, for each feature dimension, compute the mean
% of the feature and subtract it from the dataset,
% storing the mean value in mu. Next, compute the
% standard deviation of each feature and divide
% each feature by it's standard deviation, storing
% the standard deviation in sigma.
%
% Note that X is a matrix where each column is a
% feature and each row is an example. You need
% to perform the normalization separately for
% each feature.
%
% Hint: You might find the 'mean' and 'std' functions useful.
% for i=1:size(X,2),
mu(i)=mean(X(:,i));
sigma(i)=std(X(:,i));
X_norm(:,i)=(X_norm(:,i)-mu(i))/sigma(i);
end; % ============================================================ end

2. Computing Cost (for Multiple Variables) && Gradient Descent (for Multiple Variables)

由于我们单变量的时候就是用矩阵形式处理的,所以代码与单变量相同;

3.Normal Equations

正规方程就比较简单了;

function [theta] = normalEqn(X, y)
%NORMALEQN Computes the closed-form solution to linear regression
% NORMALEQN(X,y) computes the closed-form solution to linear
% regression using the normal equations. theta = zeros(size(X, 2), 1); % ====================== YOUR CODE HERE ======================
% Instructions: Complete the code to compute the closed form solution
% to linear regression and put the result in theta.
% % ---------------------- Sample Solution ---------------------- theta=inv(X'*X)*X'*y; % ------------------------------------------------------------- % ============================================================ end

Machine learning吴恩达第二周coding作业(选做)的更多相关文章

  1. Machine learning 吴恩达第二周coding作业(必做题)

    1.warmUpExercise: function A = warmUpExercise() %WARMUPEXERCISE Example function in octave % A = WAR ...

  2. Machine Learning——吴恩达机器学习笔记(酷

    [1] ML Introduction a. supervised learning & unsupervised learning 监督学习:从给定的训练数据集中学习出一个函数(模型参数), ...

  3. Machine learning吴恩达第三周 Logistic Regression

    1. Sigmoid function function g = sigmoid(z) %SIGMOID Compute sigmoid function % g = SIGMOID(z) compu ...

  4. Deap Learning (吴恩达) 第一章深度学习概论 学习笔记

    Deap Learning(Ng) 学习笔记 author: 相忠良(Zhong-Liang Xiang) start from: Sep. 8st, 2017 1 深度学习概论 打字太麻烦了,索性在 ...

  5. 吴恩达机器学习笔记38-决策下一步做什么(Deciding What to Do Next Revisited)

    我们已经讨论了模型选择问题,偏差和方差的问题.那么这些诊断法则怎样帮助我们判断,哪些方法可能有助于改进学习算法的效果,而哪些可能是徒劳的呢? 让我们再次回到最开始的例子,在那里寻找答案,这就是我们之前 ...

  6. Github | 吴恩达新书《Machine Learning Yearning》完整中文版开源

    最近开源了周志华老师的西瓜书<机器学习>纯手推笔记: 博士笔记 | 周志华<机器学习>手推笔记第一章思维导图 [博士笔记 | 周志华<机器学习>手推笔记第二章&qu ...

  7. 我在 B 站学机器学习(Machine Learning)- 吴恩达(Andrew Ng)【中英双语】

    我在 B 站学机器学习(Machine Learning)- 吴恩达(Andrew Ng)[中英双语] 视频地址:https://www.bilibili.com/video/av9912938/ t ...

  8. 【吴恩达课后编程作业】第二周作业 - Logistic回归-识别猫的图片

    1.问题描述 有209张图片作为训练集,50张图片作为测试集,图片中有的是猫的图片,有的不是.每张图片的像素大小为64*64 吴恩达并没有把原始的图片提供给我们 而是把这两个图片集转换成两个.h5文件 ...

  9. 【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第二周测验【中英】

    [中英][吴恩达课后测验]Course 1 - 神经网络和深度学习 - 第二周测验 第2周测验 - 神经网络基础 神经元节点计算什么? [ ]神经元节点先计算激活函数,再计算线性函数(z = Wx + ...

随机推荐

  1. QuickSort模板

    #include <iostream> using namespace std; struct node { int index; char name[20]; }; node data[ ...

  2. OpenCV学习记录(一):使用haar分类器进行人脸识别 标签: opencv脸部识别c++ 2017-07-03 15:59 26人阅读

    OpenCV支持的目标检测的方法是利用样本的Haar特征进行的分类器训练,得到的级联boosted分类器(Cascade Classification).OpenCV2之后的C++接口除了Haar特征 ...

  3. MapReduce的初次尝试

    ====前提: 搭建好集群环境(zookeeper.hadoop.hbase). 搭建方法这里就不进行介绍了,网上有很多博客在介绍这些. ====简单需求: WordCount单词计数,号称Hadoo ...

  4. [GO]gtk的windows环境搭建

    首先需要安装一个命令行的工作,我们这里安装的是msys2,直接百度地址然后安装即可,我这里安装的是64位 安装好之后进行该软件源配置 修改mirrorlist.msys ## Primary ## m ...

  5. Centos7下安装与卸载Jdk1.8

    安装 去官网下载jdk:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 使用xs ...

  6. ScreenCapturePro2 for Joomla_3.4.7-tinymce4x

    1.1. 与Joomla_3.4.7-tinymce4x整合 示例下载:Joomla_3.4.7,   1.1.1. 添加screencapture文件夹   1.1.2. 2.添加插件文件夹 路径: ...

  7. 【Linux】GCC编译器

    [简介] GCC是Linux下的编译工具集,是GNU Compiler Collection的缩写,包含gcc g++ 等编译器.GCC工具集不仅能编译C/C++语言,其他例如Object-c.Pas ...

  8. CodeForces 408E Curious Array(组合数学+差分)

    You've got an array consisting of n integers: a[1], a[2], ..., a[n]. Moreover, there are m queries, ...

  9. Linux RPM学习笔记

    RPM(RedHat Package Manager) rp-pppoe-3.1-5.i386.rpm软件名称-版本号-编译次数-适合的硬件平台.扩展名 xxx-devel.rpm开发使用 xxx.n ...

  10. 买了个vultr的vps,准备把博客转过去,顺便记录一点操作。

    1.shadow影子socks梯子已经搭好了,步骤: apt-get install python-pip pip install shadowsocks 任意目录创建配置文件json(ss可以在很多 ...