Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元
3 seconds
256 megabytes
standard input
standard output
Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him an interesting geometry problem. Let's definef([l, r]) = r - l + 1 to be the number of integer points in the segment [l, r] with l ≤ r (say that ). You are given two integers nand k and n closed intervals [li, ri] on OX axis and you have to find:
In other words, you should find the sum of the number of integer points in the intersection of any k of the segments.
As the answer may be very large, output it modulo 1000000007 (109 + 7).
Mike can't solve this problem so he needs your help. You will help him, won't you?
The first line contains two integers n and k (1 ≤ k ≤ n ≤ 200 000) — the number of segments and the number of segments in intersection groups respectively.
Then n lines follow, the i-th line contains two integers li, ri ( - 109 ≤ li ≤ ri ≤ 109), describing i-th segment bounds.
Print one integer number — the answer to Mike's problem modulo 1000000007 (109 + 7) in the only line.
3 2
1 2
1 3
2 3
5
3 3
1 3
1 3
1 3
3
3 1
1 2
2 3
3 4
6
In the first example:
;
;
.
So the answer is 2 + 1 + 2 = 5.
思路:给你n条线段,把线段放进数轴每次处理每个点的贡献,端点另外算;
给两组数据
2 1
1 3
3 4
2 1
1 3
5 6
#include<bits/stdc++.h>
using namespace std;
#define ll __int64
#define esp 0.00000000001
const int N=2e5+,M=1e6+,inf=1e9,mod=1e9+;
struct is
{
ll l,r;
}a[N];
ll poww(ll a,ll n)//快速幂
{
ll r=,p=a;
while(n)
{
if(n&) r=(r*p)%mod;
n>>=;
p=(p*p)%mod;
}
return r;
}
ll flag[N*];
ll lisan[N*];
ll sum[N*];
ll zz[N*];
int main()
{
ll x,y,z,i,t;
scanf("%I64d%I64d",&x,&y);
int ji=;
for(i=;i<x;i++)
{
scanf("%I64d%I64d",&a[i].l,&a[i].r);
flag[ji++]=a[i].l;
flag[ji++]=a[i].l+;
flag[ji++]=a[i].r;
flag[ji++]=a[i].r+;
}
sort(flag+,flag+ji);
ji=unique(flag+,flag+ji)-(flag+);
int h=;
for(i=;i<=ji;i++)
lisan[h++]=flag[i];
memset(flag,,sizeof(flag));
for(i=;i<x;i++)
{
int l=lower_bound(lisan+,lisan+h,a[i].l)-lisan;
int r=lower_bound(lisan+,lisan+h,a[i].r)-lisan;
flag[l]++;
flag[r+]--;
}
for(i=;i<=h;i++)
sum[i]=sum[i-]+flag[i];
ll ans=;
memset(zz,,sizeof(zz));
zz[y]=;
for (i=y+;i<=*x;i++) zz[i]=((zz[i-]*i%mod)*poww(i-y,mod-))%mod;
for(i=;i<h;i++)
{
int zh=min(sum[i],sum[i-]);
ans+=zz[zh]*(lisan[i]-lisan[i-]-);
ans+=zz[sum[i]];
ans%=mod;
}
printf("%I64d\n",ans);
return ;
}
Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元的更多相关文章
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化 排列组合
E. Mike and Geometry Problem 题目连接: http://www.codeforces.com/contest/689/problem/E Description Mike ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】
任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem
题目链接:传送门 题目大意:给你n个区间,求任意k个区间交所包含点的数目之和. 题目思路:将n个区间都离散化掉,然后对于一个覆盖的区间,如果覆盖数cnt>=k,则数目应该加上 区间长度*(cnt ...
- Codeforces Round #410 (Div. 2)C. Mike and gcd problem
题目连接:http://codeforces.com/contest/798/problem/C C. Mike and gcd problem time limit per test 2 secon ...
- Codeforces Round #361 (Div. 2) C. Mike and Chocolate Thieves 二分
C. Mike and Chocolate Thieves 题目连接: http://www.codeforces.com/contest/689/problem/C Description Bad ...
- Codeforces Round #361 (Div. 2) B. Mike and Shortcuts bfs
B. Mike and Shortcuts 题目连接: http://www.codeforces.com/contest/689/problem/B Description Recently, Mi ...
- Codeforces Round #361 (Div. 2) A. Mike and Cellphone 水题
A. Mike and Cellphone 题目连接: http://www.codeforces.com/contest/689/problem/A Description While swimmi ...
- Codeforces Round #361 (Div. 2)——B. Mike and Shortcuts(BFS+小坑)
B. Mike and Shortcuts time limit per test 3 seconds memory limit per test 256 megabytes input standa ...
- Codeforces Round #361 (Div. 2)A. Mike and Cellphone
A. Mike and Cellphone time limit per test 1 second memory limit per test 256 megabytes input standar ...
随机推荐
- VirtualBox中安装Ubuntu12.04/Ubuntu14.04虚拟机(转)
add by zhj: 如果宿主机是win7,那VirtualBox建议安装4.3.12,再高的版本在Windows7上运行会报错,从4.3.14到5.0.xx版本,一直报错,搞了半天也解决不了.如果 ...
- Python并行编程(四):线程同步之RLock
1.基本概念 如果想让只有拿到锁的线程才能释放该锁,那么应该使用RLock()对象.当需要在类外面保证线程安全,又要在类内使用同样方法的时候RLock()就很使用. RLock叫做Reentrant ...
- python学习笔记(十一)redis的介绍及安装
一.redis简介 1.redis是一个开源的.使用C语言编写的.支持网络交互的.可基于内存也可持久化的Key-Value数据库. 2.redis的官网地址,非常好记,是redis.io. ...
- C的指针疑惑:C和指针6(指针)
NULL: 对所有指针变量进行显式的初始化是种好事:(1)如果你知道指针将被初始化为什么地址,就直接初始化该地址, (2)否则把它初始化位NULL. 注意:假定变量a存储于位置100. × = 看上去 ...
- python16_day19【Django_抽屉项目】
补充ORM块: 1.select_related() # 解决:当有外健,规避多决查询,使用了join. 多次查询变成一次查询 例:UserInfo.objects.all().select_rel ...
- 我与前端之间不得不说的三天两夜之jQuery
前端基础之jquery 一 jQuery是什么? [1] jQuery由美国人John Resig创建,至今已吸引了来自世界各地的众多 javascript高手加入其team. [2] jQuery是 ...
- GIL用C语言解决
执行一个单线程死循环程序,单核cpu占用直接100% while True: pass 执行一个双线程的死循环程序,cpu同样占用100% import threading #子线程死循环 def t ...
- hdu2825Wireless Password
地址:http://acm.hdu.edu.cn/showproblem.php?pid=2825 题目: Wireless Password Time Limit: 2000/1000 MS (Ja ...
- XVII Open Cup named after E.V. Pankratiev Grand Prix of Moscow Workshops, Sunday, April 23, 2017 Problem K. Piecemaking
题目:Problem K. PiecemakingInput file: standard inputOutput file: standard outputTime limit: 1 secondM ...
- [转]20个你不得不知的Linux服务器性能调优技巧
Linux是一种开源操作系统,它支持各种硬件平台,Linux服务器全球知名,它和Windows之间最主要的差异在于,Linux服务器默认情况下一般不提供GUI(图形用户界面),而是命令行界面,它的主要 ...