Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元
3 seconds
256 megabytes
standard input
standard output
Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him an interesting geometry problem. Let's definef([l, r]) = r - l + 1 to be the number of integer points in the segment [l, r] with l ≤ r (say that
). You are given two integers nand k and n closed intervals [li, ri] on OX axis and you have to find:

In other words, you should find the sum of the number of integer points in the intersection of any k of the segments.
As the answer may be very large, output it modulo 1000000007 (109 + 7).
Mike can't solve this problem so he needs your help. You will help him, won't you?
The first line contains two integers n and k (1 ≤ k ≤ n ≤ 200 000) — the number of segments and the number of segments in intersection groups respectively.
Then n lines follow, the i-th line contains two integers li, ri ( - 109 ≤ li ≤ ri ≤ 109), describing i-th segment bounds.
Print one integer number — the answer to Mike's problem modulo 1000000007 (109 + 7) in the only line.
3 2
1 2
1 3
2 3
5
3 3
1 3
1 3
1 3
3
3 1
1 2
2 3
3 4
6
In the first example:
;
;
.
So the answer is 2 + 1 + 2 = 5.
思路:给你n条线段,把线段放进数轴每次处理每个点的贡献,端点另外算;
给两组数据
2 1
1 3
3 4
2 1
1 3
5 6
#include<bits/stdc++.h>
using namespace std;
#define ll __int64
#define esp 0.00000000001
const int N=2e5+,M=1e6+,inf=1e9,mod=1e9+;
struct is
{
ll l,r;
}a[N];
ll poww(ll a,ll n)//快速幂
{
ll r=,p=a;
while(n)
{
if(n&) r=(r*p)%mod;
n>>=;
p=(p*p)%mod;
}
return r;
}
ll flag[N*];
ll lisan[N*];
ll sum[N*];
ll zz[N*];
int main()
{
ll x,y,z,i,t;
scanf("%I64d%I64d",&x,&y);
int ji=;
for(i=;i<x;i++)
{
scanf("%I64d%I64d",&a[i].l,&a[i].r);
flag[ji++]=a[i].l;
flag[ji++]=a[i].l+;
flag[ji++]=a[i].r;
flag[ji++]=a[i].r+;
}
sort(flag+,flag+ji);
ji=unique(flag+,flag+ji)-(flag+);
int h=;
for(i=;i<=ji;i++)
lisan[h++]=flag[i];
memset(flag,,sizeof(flag));
for(i=;i<x;i++)
{
int l=lower_bound(lisan+,lisan+h,a[i].l)-lisan;
int r=lower_bound(lisan+,lisan+h,a[i].r)-lisan;
flag[l]++;
flag[r+]--;
}
for(i=;i<=h;i++)
sum[i]=sum[i-]+flag[i];
ll ans=;
memset(zz,,sizeof(zz));
zz[y]=;
for (i=y+;i<=*x;i++) zz[i]=((zz[i-]*i%mod)*poww(i-y,mod-))%mod;
for(i=;i<h;i++)
{
int zh=min(sum[i],sum[i-]);
ans+=zz[zh]*(lisan[i]-lisan[i-]-);
ans+=zz[sum[i]];
ans%=mod;
}
printf("%I64d\n",ans);
return ;
}
Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元的更多相关文章
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化 排列组合
E. Mike and Geometry Problem 题目连接: http://www.codeforces.com/contest/689/problem/E Description Mike ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】
任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem
题目链接:传送门 题目大意:给你n个区间,求任意k个区间交所包含点的数目之和. 题目思路:将n个区间都离散化掉,然后对于一个覆盖的区间,如果覆盖数cnt>=k,则数目应该加上 区间长度*(cnt ...
- Codeforces Round #410 (Div. 2)C. Mike and gcd problem
题目连接:http://codeforces.com/contest/798/problem/C C. Mike and gcd problem time limit per test 2 secon ...
- Codeforces Round #361 (Div. 2) C. Mike and Chocolate Thieves 二分
C. Mike and Chocolate Thieves 题目连接: http://www.codeforces.com/contest/689/problem/C Description Bad ...
- Codeforces Round #361 (Div. 2) B. Mike and Shortcuts bfs
B. Mike and Shortcuts 题目连接: http://www.codeforces.com/contest/689/problem/B Description Recently, Mi ...
- Codeforces Round #361 (Div. 2) A. Mike and Cellphone 水题
A. Mike and Cellphone 题目连接: http://www.codeforces.com/contest/689/problem/A Description While swimmi ...
- Codeforces Round #361 (Div. 2)——B. Mike and Shortcuts(BFS+小坑)
B. Mike and Shortcuts time limit per test 3 seconds memory limit per test 256 megabytes input standa ...
- Codeforces Round #361 (Div. 2)A. Mike and Cellphone
A. Mike and Cellphone time limit per test 1 second memory limit per test 256 megabytes input standar ...
随机推荐
- Linux修改信息
修改时间 sudo date -s MM/DD/YY //修改日期 sudo date -s hh:mm:ss //修改时间 在修改时间以后,修改硬件CMOS的时间 sudo hwclock --sy ...
- TensorFlow学习笔记(六)循环神经网络
一.循环神经网络简介 循环神经网络的主要用途是处理和预测序列数据.循环神经网络刻画了一个序列当前的输出与之前信息的关系.从网络结构上,循环神经网络会记忆之前的信息,并利用之前的信息影响后面节点的输出. ...
- 20165324《Java程序设计》第一周
20165324<Java程序设计>第一周学习总结 教材学习内容总结 第一章:Java入门 重点一.编写Java程序 第一步编写源文件,(注:第一步中Java严格区分大小写:Java源文件 ...
- C++学习笔记-const和static
const 1.使用const来定义常量 const int num = 10; //应该在声明时进行初始化,否则该常量的值是不确定的,而且无法修改 2.const与指针 指向常量的指针(const修 ...
- Delphi APP 開發入門(三)簡易計算機
Delphi APP 開發入門(三)簡易計算機 分享: Share on facebookShare on twitterShare on google_plusone_share 閲讀次數:68 ...
- PKU 1379 Run Away(模拟退火算法)
题目大意:原题链接 给出指定的区域,以及平面内的点集,求出一个该区域内一个点的坐标到点集中所有点的最小距离最大. 解题思路:一开始想到用随机化算法解决,但是不知道如何实现.最后看了题解才知道原来是要用 ...
- -webkit-box
父容器 display: flex; justify-content: center;/*主轴*/ align-items: center; /*交叉轴*/ display: -webkit-box; ...
- mysql中explain的用法
mysql中explain的用法 最近在做性能测试中经常遇到一些数据库的问题,通常使用慢查询日志可以找到执行效果比较差的sql,但是仅仅找到这些sql是不行的,我们需要协助开发人员分析问题所在,这就经 ...
- IDEA 程序直接运行分析
今天用IDEA运行SpringBoot程序,启动时始终报错说读取不到datasource的url配置. 分析代码的resources目录,是有配置文件的,配置也是正常的.如下图: 后来经人指点,是因为 ...
- AndroidManifest.xml中的注册组件
界面跳转时Activity的识别方法有两种:第一种,通过name 第二种,通过<intent-filter> 通过配置文件中配置<intent-filter>来实现Activi ...