文章来源:https://www.jianshu.com/p/01577e86e506

pytorch中的 2D 卷积层 和 2D 反卷积层 函数分别如下:

 class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, bias=True)
class torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, bias=True)

我不禁有疑问:

  • 问题1: 两个函数的参数为什么几乎一致呢?
  • 问题2: 反卷积层中的 output_padding是什么意思呢?
  • 问题3: 反卷积层如何计算input和output的形状关系呢?

    看了中文文档后,我得不出答案,看了英文文档,才弄明白了。花费了一个下午的时间去研究这个问题,值得用此文纪录一下。

我们知道,在卷积层中,输入输出的形状关系为:

o = [ (i + 2p - k)/s ] +1 (1)

其中:

  • O : 为 output size
  • i: 为 input size
  • p: 为 padding size
  • k: 为kernel size
  • s: 为 stride size
  • [] 为下取整运算

(1) 当 S=1 时

若 s等于1,则公式(1)中的取整符号消失,o 与 i 为 一一对应 的关系。 我们有结论:

如果卷积层函数和反卷积层函数的 kernel_size, padding size参数相同(且 stride= 1),设反卷基层的输入输出形状为 i' 和 o', 卷积层的输入输出形状i和o, 则它们为 交叉对应 的关系,即:

i = o'
o = i'

为回答问题3, 我们将上述关系代入公式中,即:

i' = o' + 2p - k +1

已知 i', 即可推出 o':

o' = i' - 2p + k - 1 (2)

摘两个例子:

(2) 当 S>1 时

若 S>1 , 则公式(1)中的取整符号不能消去,o 与 i 为 多对1 的关系。 效仿 S=1时的情形, 我们有结论:

如果卷积层函数和反卷积层函数的 kernel_size, padding size参数相同(且 stride>1),设反卷基层的输入输出形状为 i' 和 o', 卷积层的输入输出形状i和o,

i' = [ (o' + 2p - k)/s ] +1

已知 i', 我们可以得出 s 个 o' 解:

o'(0) = ( i' - 1) x s + k - 2p
o'(1) = o'(1) + 1
o'(2) = o'(1) + 2
...
o'(s-1) = o'(1) + s-1

即:

o'(n) =o'(1) + n = ( i' - 1) x s + k - 2p + n,
n = {0, 1, 2...s-1}

为了确定唯一的 o' 解, 我们用反卷积层函数中的ouput padding参数指定公式中的 n 值。这样,我们就回答了问题(2)。

摘一个简单的例子:

(3) 实验验证

给出一小段测试代码,改变各个参数值,运行比较来验证上面得出的结论,have fun~.

from torch import nn
from torch.nn import init
from torch.autograd import Variable dconv = nn.ConvTranspose2d(in_channels=1, out_channels= 1, kernel_size=2, stride=2, padding=1,output_padding=0, bias= False)
init.constant(dconv.weight, 1)
print(dconv.weight) input = Variable(torch.ones(1, 1, 2, 2))
print(input)
print(dconv(input))

[PyTorch]PyTorch中反卷积的用法的更多相关文章

  1. 深度学习卷积网络中反卷积/转置卷积的理解 transposed conv/deconv

    搞明白了卷积网络中所谓deconv到底是个什么东西后,不写下来怕又忘记,根据参考资料,加上我自己的理解,记录在这篇博客里. 先来规范表达 为了方便理解,本文出现的举例情况都是2D矩阵卷积,卷积输入和核 ...

  2. 第十四节,TensorFlow中的反卷积,反池化操作以及gradients的使用

    反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用 ...

  3. Pytorch中nn.Conv2d的用法

    Pytorch中nn.Conv2d的用法 nn.Conv2d是二维卷积方法,相对应的还有一维卷积方法nn.Conv1d,常用于文本数据的处理,而nn.Conv2d一般用于二维图像. 先看一下接口定义: ...

  4. (原)CNN中的卷积、1x1卷积及在pytorch中的验证

    转载请注明处处: http://www.cnblogs.com/darkknightzh/p/9017854.html 参考网址: https://pytorch.org/docs/stable/nn ...

  5. PyTorch官方中文文档:torch.nn

    torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom ...

  6. 对抗生成网络-图像卷积-mnist数据生成(代码) 1.tf.layers.conv2d(卷积操作) 2.tf.layers.conv2d_transpose(反卷积操作) 3.tf.layers.batch_normalize(归一化操作) 4.tf.maximum(用于lrelu) 5.tf.train_variable(训练中所有参数) 6.np.random.uniform(生成正态数据

    1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的 ...

  7. PyTorch官方中文文档:torch.optim 优化器参数

    内容预览: step(closure) 进行单次优化 (参数更新). 参数: closure (callable) –...~ 参数: params (iterable) – 待优化参数的iterab ...

  8. pytorch(13)卷积层

    卷积层 1. 1d/2d/3d卷积 Dimension of Convolution 卷积运算:卷积核在输入信号(图像)上滑动,相应位置上进行乘加 卷积核:又称为滤波器,过滤器,可认为是某种模式,某种 ...

  9. CNN中各类卷积总结:残差、shuffle、空洞卷积、变形卷积核、可分离卷积等

    CNN从2012年的AlexNet发展至今,科学家们发明出各种各样的CNN模型,一个比一个深,一个比一个准确,一个比一个轻量.我下面会对近几年一些具有变革性的工作进行简单盘点,从这些充满革新性的工作中 ...

随机推荐

  1. Cookies and Caching Client Identification

    w HTTP The Definitive Guide 11.6.9 Cookies and Caching You have to be careful when caching documents ...

  2. 基于spring的quartz定时框架,实现简单的定时任务功能

    在项目中,经常会用到定时任务,这就需要使用quartz框架去进行操作. 今天就把我最近做的个人主页项目里面的定时刷新功能分享一下,很简单. 首先需要配置一个配置文件,因为我是基于spring框架的,所 ...

  3. Python 3.5 中的异步HTTP请求写法

    Python 3.5 增加了对async def and await的支持,同样的异步代码看起来干净了很多,也更易读. import aiohttp import asyncio async def ...

  4. Python在向CSV文件写中文时乱码的处理办法

    前言 python2最大的坑在于中文编码问题,遇到中文报错首先加u,再各种encode.decode.当list.tuple.dict里面有中文时,打印出来的是Unicode编码,这个是无解的.对中文 ...

  5. HTTP错误404.2-Not Found ,模块CgiModule,错误代码0x800704ec

    目录 问题案例 解决问题 问题案例 错误:HTTP 错误 404.2 - Not Found. 由于 Web 服务器上的“ISAPI 和 CGI 限制”列表设置,无法提供您请求的页面. 解决问题 网上 ...

  6. Jenkins的安装及邮件配置

    Jenkins介绍  Jenkins,是基于Java开发的一种持续集成工具,用于监控秩序重复的工作,包括: 1).持续的软件版本发布/测试项目. 2).监控外部调用执行的工作. Jenkins安装 j ...

  7. HDU中大数实现的题目,持续更新(JAVA实现)

    HDU1002:大数加法,PE了N次 import java.util.Scanner; import java.math.*; public class Main { public static v ...

  8. 记录:python读取excel文件

    由于最近老是用到python读取excel文件,所以特意记录一下python读取excel文件的大体框架. 库:xlrd(读),直接pip安装即可.想要写excel文件的话,安装xlwd库即可,也是直 ...

  9. web前端攻城狮整理的收藏夹

    作为一名web前端开发工程师你的收藏夹存对了吗?下面是一份互联网上流传甚广的web前端开发收藏夹资源,包含学习网站.JS库.常用工具.常用插件.资讯书籍等资源.速速转存吧~   一.学习网站   W3 ...

  10. Java 写文件实现换行

    第一种: 写入的内容中利用\r\n进行换行 File file = new File("D:/text"); try { if(!file.exists()) file.creat ...