Hadoop Combiners
In the last post and in the preceding one we saw how to write a MapReduce program for finding the top-n items of a data set. The difference between the two was that the first program (which we call basic) emitted to the reducers every single item read from input, while the second (which we call enhanced) made a partial computation and emitted only a subset of the input. The enhanced top-n optimizes network transmissions (the less the key-value pairs emitted, the less network is used for transmitting them from mapper to reducer) and reduces the number of keys shuffled and sorted; but this is obtained at the cost of rewriting of the mapper.
If we look at the code of the mapper of the enhanced top-n , we can see that it implements the idea behind the reducer: it uses a Map for making a partial count of the words and emits every word only once; looking at the reducer's code, we see that it implements the same idea. If we could execute the code of the reducer of the basic top-n after the mapper has run on every machine (with its subset of data), we would obtain exactly the same result than rewriting the mapper as in the enhanced. This is exactly what Hadoop combiners do: they're executed just after the mapper on every machine for improving performance. For telling Hadoop which class to use as a combiner, we can use the Job.setCombinerClass() method.
Caution: using the reducer as a combiner works only if the function we're computing is both commutative (a + b = b + a) and associative (a + (b + c) = (a + b) + c).
Let's make an example. Suppose we're analyzing the traffic of a website and we have an input file with the number of visits per day like this (YYYYMMDD value):
20140401 100
20140331 1000
20140330 1300
20140329 5100
20140328 1200
We want to find which is the day with the highest number of visits.
Let's say that we have two mappers; the first one receives the first three lines and the second receives the last two. If we write the mapper to emit every line, the reducer will evaluate something like this:
max(100, 1000, 1300, 5100, 1200) -> 5100
and the max is 5100.
If we use the reducer as a combiner, the reducer will evaluate something like this:
max( max(100, 1000, 1300), max(5100, 1200)) -> max( 1300, 5100) -> 5100
because each of the two mapper will evaluate locally the max function. In this case the result will be 5100 as well, since the function we're evaluating (the max function) is both commutative and associative.
Let's say that now we need to compute the average number of visits per day. If we write the mapper to emit every line of the input file, the reducer will evaluate this:
mean(100, 1000, 1300, 5100, 1200) -> 1740
which is 1740.
If we use the reducer as a combiner, the reducer will evaluate something like this:
mean( mean(100, 1000, 1300), mean(5100, 1200)) -> mean( 800, 3150) -> 1975
because each of the two mapper will evaluate locally the max function. In this case the result will be 1975, which is obviously wrong.
So, if we're computing a commutative and associative function and we want to improve the performance of our job, we can use our reducer as a combiner; if we want to improve performance but we're computing a function that is not commutative and associative, we have to rewrite the mapper or to write a new combiner from stratch.
from: http://andreaiacono.blogspot.com/2014/03/hadoop-combiners.html
Hadoop Combiners的更多相关文章
- 更为详细的介绍Hadoop combiners-More about Hadoop combiners
Hadoop combiners are a very powerful tool to speed up our computations. We already saw what a combin ...
- Hadoop学习笔记—8.Combiner与自定义Combiner
一.Combiner的出现背景 1.1 回顾Map阶段五大步骤 在第四篇博文<初识MapReduce>中,我们认识了MapReduce的八大步凑,其中在Map阶段总共五个步骤,如下图所示: ...
- Hadoop日记Day17---计数器、map规约、分区学习
一.Hadoop计数器 1.1 什么是Hadoop计数器 Haoop是处理大数据的,不适合处理小数据,有些大数据问题是小数据程序是处理不了的,他是一个高延迟的任务,有时处理一个大数据需要花费好几个小时 ...
- [BigData]关于Hadoop学习笔记第四天(PPT总结)(一)
课程安排 Partitioner编程** 自定义排序编程** Combiner编程** 常见的MapReduce算法** ---------------------------加深拓展-------- ...
- hadoop调优之一:概述
hadoop集群性能低下的常见原因 (一)硬件环境 1.CPU/内存不足,或未充分利用 2.网络原因 3.磁盘原因 (二)map任务原因 1.输入文件中小文件过多,导致多次启动和停止JVM进程.可以设 ...
- 一脸懵逼学习Hadoop中的MapReduce程序中自定义分组的实现
1:首先搞好实体类对象: write 是把每个对象序列化到输出流,readFields是把输入流字节反序列化,实现WritableComparable,Java值对象的比较:一般需要重写toStrin ...
- hadoop两大核心之一:MapReduce总结
MapReduce是一种分布式计算模型,由Google提出,主要用于搜索领域,MapReduce程序 本质上是并行运行的,因此可以解决海量数据的计算问题. MapReduce任务过程被分为两个处理阶段 ...
- hadoop调优之一:概述 分类: A1_HADOOP B3_LINUX 2015-03-13 20:51 395人阅读 评论(0) 收藏
hadoop集群性能低下的常见原因 (一)硬件环境 1.CPU/内存不足,或未充分利用 2.网络原因 3.磁盘原因 (二)map任务原因 1.输入文件中小文件过多,导致多次启动和停止JVM进程.可以设 ...
- Hadoop 三剑客之 —— 分布式计算框架 MapReduce
一.MapReduce概述 二.MapReduce编程模型简述 三.combiner & partitioner 四.MapReduce词频统计案例 4.1 项目简介 ...
随机推荐
- Adminimize 插件:WordPress根据用户角色显示/隐藏某些后台功能
倡萌刚才分享了 WordPress根据用户角色隐藏文章/页面的功能模块(Meta Boxes),如果你还想根据不同用户角色显示或隐藏后台的某些功能,比如 顶部工具条.左边导航菜单.小工具.仪表盘.菜单 ...
- JS模块化规范CMD之SeaJS
1. 在接触规范之前,我们用模块化来封装代码大多为如下: ;(function (形参模块名, 依赖项, 依赖项) { // 通过 形参模块名 修改模块 window.模块名 = 形参模块名 })(w ...
- 面试题30:最小的K个数
方法一:利用partition void GetLeastNumbers_Solution1(int* input, int n, int* output, int k) { || k <= ) ...
- DotNetOpenAuth实践之WebApi资源服务器
系列目录: DotNetOpenAuth实践系列(源码在这里) 上篇我们讲到WCF服务作为资源服务器接口提供数据服务,那么这篇我们介绍WebApi作为资源服务器,下面开始: 一.环境搭建 1.新建We ...
- java 错误:无法找到或装入主类
1. 删除找不到的jar 2. 删除src以外的文件夹
- Arduino可穿戴教程之第一个程序——上传运行程序(四)
Arduino可穿戴教程之第一个程序——上传运行程序(四) 2.4.5 上传程序 现在所有Arduino IDE的设置都完成了,我们就可以将示例程序上传到板子中了.这非常简单,只需要单击如图2.45 ...
- Scrapy实战篇(五)爬取京东商城文胸信息
创建scrapy项目 scrapy startproject jingdong 填充 item.py文件 在这里定义想要存储的字段信息 import scrapy class JingdongItem ...
- IIS服务器部署
1.开始菜单----搜索框---输入IIS,在结果中,找到IIS快捷方式. 2.进入IIS主界面,右键网站,选择“添加网站”. 3.在“添加网站”对话框中,添加网站名称. 4.点击应用程序池选择,设置 ...
- 【atcoder F - Namori】**
F- Namori http://agc004.contest.atcoder.jp/tasks/agc004_f Time limit : 2sec / Memory limit : 256MB S ...
- AOP:声明式事务管理流程
1. 注册BeanFactoryTransactionAttributeSourceAdvisor @EnableTransactionManagement --> @Import(Transa ...