UVALive-4287 Proving Equivalences (有向图的强连通分量)
题目大意:有n个命题,已知其中的m个推导,要证明n个命题全部等价(等价具有传递性),最少还需要做出几次推导。
题目分析:由已知的推导可以建一张无向图,则问题变成了最少需要增加几条边能使图变成强连通图。找出所有的强连通分量,将每一个连通分量视作一个大节点,则整张图变成了一张DAG。设出度为0的大节点个数为a,入度为0的大节点个数为b,则答案就是max(a,b)。为什么是这样呢?因为要使等价证明前进下去,每个大节点的出度和入度都必须不能是0。
代码如下:
# include<iostream>
# include<cstdio>
# include<vector>
# include<stack>
# include<cstring>
# include<algorithm>
using namespace std; const int maxn=20005;
int n,m,low[maxn],pre[maxn],sccno[maxn],in[maxn],out[maxn],dfs_cnt,scc_cnt;
stack<int>S;
vector<int>G[maxn]; void dfs(int u)
{
low[u]=pre[u]=++dfs_cnt;
S.push(u);
for(int i=0;i<G[u].size();++i){
int v=G[u][i];
if(!pre[v]){
dfs(v);
low[u]=min(low[u],low[v]);
}else if(!sccno[v])
low[u]=min(pre[v],low[u]);
}
if(low[u]==pre[u]){
++scc_cnt;
while(1){
int x=S.top();
S.pop();
sccno[x]=scc_cnt;
if(x==u)
break;
}
}
} void findScc()
{
memset(low,0,sizeof(low));
memset(pre,0,sizeof(pre));
memset(sccno,0,sizeof(sccno));
dfs_cnt=scc_cnt=0;
for(int i=0;i<n;++i) if(!pre[i])
dfs(i);
} void read()
{
int a,b;
scanf("%d%d",&n,&m);
for(int i=0;i<n;++i) G[i].clear();
while(m--)
{
scanf("%d%d",&a,&b);
--a,--b;
G[a].push_back(b);
}
} void solve()
{
for(int i=1;i<=scc_cnt;++i)
in[i]=out[i]=1;///先假设所有分量的出度和入度都是0;
for(int i=0;i<n;++i)
for(int j=0;j<G[i].size();++j)
if(sccno[i]!=sccno[G[i][j]])
out[sccno[i]]=in[sccno[G[i][j]]]=0;///如果i和G[i][j]不在一个分量内,则其对应的出度和入度不是0;
int a=0,b=0;
for(int i=1;i<=scc_cnt;++i){
if(in[i]) ++a;
if(out[i]) ++b;
}
int ans=max(a,b);
if(scc_cnt==1)
ans=0;
printf("%d\n",ans);
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
read();
findScc();
solve();
}
return 0;
}
UVALive-4287 Proving Equivalences (有向图的强连通分量)的更多相关文章
- UVALive-4287 Proving Equivalences 有向图的强连通分量+缩点
题意:有n个命题,已知其中的m个推导,要证明n个命题全部等价(等价具有传递性),最少还需要做出几次推导. 思路:由已知的推导可以建一张无向图,则问题变成了最少需要增加几条边能使图变成强连通图.找出所有 ...
- UVALive - 4287 - Proving Equivalences(强连通分量)
Problem UVALive - 4287 - Proving Equivalences Time Limit: 3000 mSec Problem Description Input Outp ...
- UVALIVE 4287 Proving Equivalences (强连通分量+缩点)
题意:给定一个图,问至少加入多少条边能够使这个图强连通. 思路:首先求出这个图的强连通分量.然后把每个强连通分量缩成一个点.那么这个图变成了一个DAG,求出全部点的入度和出度,由于强连通图中每个节点的 ...
- UVALive - 4287 Proving Equivalences
给定n个命题之间的已经证明的关系如 a b表示已经证明蕴含式a→b,要求还需要再作多少次证明使得所有的命题都是等价的.将每个命题看成一个点,已经证明的命题之间连一条边,问题转化为添加多少条单向边使得图 ...
- UVALive 4287 SCC-Tarjan 加边变成强连通分量
还是强连通分量的题目,但是这个题目不同的在于,问你最少要添加多少条有向边,使得整个图变成一个强连通分量 然后结论是,找到那些入度为0的点的数目 和 出度为0的点的数目,取其最大值即可,怎么证明嘛... ...
- UvaLive 4287 Proving Equivalences 强连通缩点
原题链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...
- UVALive 4287 Proving Equivalences(缩点)
等价性问题,给出的样例为 a->b的形式,问要实现全部等价(即任意两个可以互相推出),至少要加多少个形如 a->b的条件. 容易想到用强连通缩点,把已经实现等价的子图缩掉,最后剩余DAG. ...
- UVA247- Calling Circles(有向图的强连通分量)
题目链接 题意: 给定一张有向图.找出全部强连通分量,并输出. 思路:有向图的强连通分量用Tarjan算法,然后用map映射,便于输出,注意输出格式. 代码: #include <iostrea ...
- 『Tarjan算法 有向图的强连通分量』
有向图的强连通分量 定义:在有向图\(G\)中,如果两个顶点\(v_i,v_j\)间\((v_i>v_j)\)有一条从\(v_i\)到\(v_j\)的有向路径,同时还有一条从\(v_j\)到\( ...
- 图->连通性->有向图的强连通分量
文字描述 有向图强连通分量的定义:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly co ...
随机推荐
- Oracle获取当前session ID的方法
1.使用v$mystat视图获取当前session的ID select sid from v$mystat; 2.使用userenv内部函数获取当前session的ID select userenv( ...
- boost::any 用法
boost::any可以存放任何类型的C++类型,也可以是用户自定义的类型.非常方便,可以很方便的满足在运行过程中判断数据类型,从而进行相关的操作. 函数原型: // In header: <b ...
- bit,byte,char,位,字节,字符 的区别
bit,byte,char,位,字节,字符 的区别 原创文章,未经作者允许,禁止转载!!!
- 漫谈DOM 事件流的三个阶段
一丶 流 什么是流? 比如 react 中的单项数据流,Node.js 中的流,或者本文中的 DOM 事件流,都是流的具体体现.专业地讲,流是程序输入或输出的一个连续的字节序列:通俗地讲,流是有方向的 ...
- SQL Server排名函数与排名开窗函数
什么是排名函数?说实话我也不甚清楚,我知道 order by 是排序用的,那么什么又是排名函数呢? 接下来看几个示例就明白了. 首先建立一个表,随便插入一些数据. ROW_NUMBER 函数:直接排序 ...
- node的3大作用域
除了持久性存储外,想要内存也可以存入数据,来做计算什么数据都存入访问一便数据库,效率就太低了 java有3大作用域request 指在一次请求的全过程中有效,即从http请求到服务器处理结束,返回响应 ...
- linux 下安装python3
这篇真的很好 没报错一次通过了 https://www.cnblogs.com/kimyeee/p/7250560.html
- hdu5558 Alice's Classified Message
地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=5558 题目: Alice's Classified Message Time Limit: 1 ...
- PHP SQL写法 积累(注:PHPSQL与LINQ SQL相似)
1: $data ['parentid'] = $pid; M('menu')->where($data)->order(' id asc ')-> select(); // ...
- c# c++通信--命名管道通信
进程间通信有很多种,windows上面比较简单的有管道通信(匿名管道及命名管道) 最近做个本机c#界面与c++服务进行通信的一个需求.简单用命名管道通信.msdn都直接有demo,详见下方参考. c+ ...