题目大意:有n个命题,已知其中的m个推导,要证明n个命题全部等价(等价具有传递性),最少还需要做出几次推导。

题目分析:由已知的推导可以建一张无向图,则问题变成了最少需要增加几条边能使图变成强连通图。找出所有的强连通分量,将每一个连通分量视作一个大节点,则整张图变成了一张DAG。设出度为0的大节点个数为a,入度为0的大节点个数为b,则答案就是max(a,b)。为什么是这样呢?因为要使等价证明前进下去,每个大节点的出度和入度都必须不能是0。

代码如下:

# include<iostream>
# include<cstdio>
# include<vector>
# include<stack>
# include<cstring>
# include<algorithm>
using namespace std; const int maxn=20005;
int n,m,low[maxn],pre[maxn],sccno[maxn],in[maxn],out[maxn],dfs_cnt,scc_cnt;
stack<int>S;
vector<int>G[maxn]; void dfs(int u)
{
low[u]=pre[u]=++dfs_cnt;
S.push(u);
for(int i=0;i<G[u].size();++i){
int v=G[u][i];
if(!pre[v]){
dfs(v);
low[u]=min(low[u],low[v]);
}else if(!sccno[v])
low[u]=min(pre[v],low[u]);
}
if(low[u]==pre[u]){
++scc_cnt;
while(1){
int x=S.top();
S.pop();
sccno[x]=scc_cnt;
if(x==u)
break;
}
}
} void findScc()
{
memset(low,0,sizeof(low));
memset(pre,0,sizeof(pre));
memset(sccno,0,sizeof(sccno));
dfs_cnt=scc_cnt=0;
for(int i=0;i<n;++i) if(!pre[i])
dfs(i);
} void read()
{
int a,b;
scanf("%d%d",&n,&m);
for(int i=0;i<n;++i) G[i].clear();
while(m--)
{
scanf("%d%d",&a,&b);
--a,--b;
G[a].push_back(b);
}
} void solve()
{
for(int i=1;i<=scc_cnt;++i)
in[i]=out[i]=1;///先假设所有分量的出度和入度都是0;
for(int i=0;i<n;++i)
for(int j=0;j<G[i].size();++j)
if(sccno[i]!=sccno[G[i][j]])
out[sccno[i]]=in[sccno[G[i][j]]]=0;///如果i和G[i][j]不在一个分量内,则其对应的出度和入度不是0;
int a=0,b=0;
for(int i=1;i<=scc_cnt;++i){
if(in[i]) ++a;
if(out[i]) ++b;
}
int ans=max(a,b);
if(scc_cnt==1)
ans=0;
printf("%d\n",ans);
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
read();
findScc();
solve();
}
return 0;
}

  

UVALive-4287 Proving Equivalences (有向图的强连通分量)的更多相关文章

  1. UVALive-4287 Proving Equivalences 有向图的强连通分量+缩点

    题意:有n个命题,已知其中的m个推导,要证明n个命题全部等价(等价具有传递性),最少还需要做出几次推导. 思路:由已知的推导可以建一张无向图,则问题变成了最少需要增加几条边能使图变成强连通图.找出所有 ...

  2. UVALive - 4287 - Proving Equivalences(强连通分量)

    Problem   UVALive - 4287 - Proving Equivalences Time Limit: 3000 mSec Problem Description Input Outp ...

  3. UVALIVE 4287 Proving Equivalences (强连通分量+缩点)

    题意:给定一个图,问至少加入多少条边能够使这个图强连通. 思路:首先求出这个图的强连通分量.然后把每个强连通分量缩成一个点.那么这个图变成了一个DAG,求出全部点的入度和出度,由于强连通图中每个节点的 ...

  4. UVALive - 4287 Proving Equivalences

    给定n个命题之间的已经证明的关系如 a b表示已经证明蕴含式a→b,要求还需要再作多少次证明使得所有的命题都是等价的.将每个命题看成一个点,已经证明的命题之间连一条边,问题转化为添加多少条单向边使得图 ...

  5. UVALive 4287 SCC-Tarjan 加边变成强连通分量

    还是强连通分量的题目,但是这个题目不同的在于,问你最少要添加多少条有向边,使得整个图变成一个强连通分量 然后结论是,找到那些入度为0的点的数目 和 出度为0的点的数目,取其最大值即可,怎么证明嘛... ...

  6. UvaLive 4287 Proving Equivalences 强连通缩点

    原题链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...

  7. UVALive 4287 Proving Equivalences(缩点)

    等价性问题,给出的样例为 a->b的形式,问要实现全部等价(即任意两个可以互相推出),至少要加多少个形如 a->b的条件. 容易想到用强连通缩点,把已经实现等价的子图缩掉,最后剩余DAG. ...

  8. UVA247- Calling Circles(有向图的强连通分量)

    题目链接 题意: 给定一张有向图.找出全部强连通分量,并输出. 思路:有向图的强连通分量用Tarjan算法,然后用map映射,便于输出,注意输出格式. 代码: #include <iostrea ...

  9. 『Tarjan算法 有向图的强连通分量』

    有向图的强连通分量 定义:在有向图\(G\)中,如果两个顶点\(v_i,v_j\)间\((v_i>v_j)\)有一条从\(v_i\)到\(v_j\)的有向路径,同时还有一条从\(v_j\)到\( ...

  10. 图->连通性->有向图的强连通分量

    文字描述 有向图强连通分量的定义:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly co ...

随机推荐

  1. 过滤adb logcat 日志

    原文地址http://blog.csdn.net/listening_music/article/details/7518990 另外比较好的文章http://blog.csdn.net/liao27 ...

  2. Bitmap: a C++ class

    Bitmap: a C++ class        The five steps involved to draw a bitmap: Load bitmap using LoadBitmap or ...

  3. python阳历转阴历,阴历转阳历

    #!/usr/bin/env python # coding:utf8 # author:Z time:2019/1/16 import sxtwl # 日历中文索引 ymc = [u"十一 ...

  4. The 15th UESTC Programming Contest Preliminary M - Minimum C0st cdoj1557

    地址:http://acm.uestc.edu.cn/#/problem/show/1557 题目: Minimum C0st Time Limit: 3000/1000MS (Java/Others ...

  5. oracle 11g怎样配置才能连接远程数据库

      打开所有程序->找到oracle-oradb11g-home1->Net Configuration Assistant,如图所示    选择本地网络服务名配置,点击下一步   选择添 ...

  6. LRU算法---缓存淘汰算法

    计算机中的缓存大小是有限的,如果对所有数据都缓存,肯定是不现实的,所以需要有一种淘汰机制,用于将一些暂时没有用的数据给淘汰掉,以换入新鲜的数据进来,这样可以提高缓存的命中率,减少磁盘访问的次数. LR ...

  7. Android 4.4 音量调节流程分析(一)

    最近在做Android Audio方面的工作,有需求是在调节Volume_Up_Key & Volume_Down_key时,Spearker or Headset每音阶的衰减变为3db左右. ...

  8. qml源码查看

    已5.4为例说明: QtQuick源码查看: 地址:Qt\Qt5.4.1\5.4\Src\qtdeclarative\src\quick\items Qt control源码查看: 地址:\Qt\Qt ...

  9. Oracle中验证非空的函数NVL(),NVL2()总结

    1.NVL()函数 NVL函数的格式如下: NVL(expr1,expr2) 含义是:如果oracle第一个参数为空那么显示第二个参数的值,如果第一个参数的值不为空,则显示第一个参数本来的值. 2 N ...

  10. 《Java入门第三季》第一章 异常与异常处理

    Java异常简介 1.Java异常的体系结构.万恶之源Throwable以及它的两个大儿子Mr.Error(程序终结者)和Mr.Exception(有大量儿子,包括不受查的RuntimeExcepti ...