【BZOJ3809/3236】Gty的二逼妹子序列 [Ahoi2013]作业 莫队算法+分块
【BZOJ3809】Gty的二逼妹子序列
Description
Input
Output
对每个询问,单独输出一行,表示sl...sr中权值∈[a,b]的权值的种类数。
Sample Input
4 4 5 1 4 1 5 1 2 1
5 9 1 2
3 4 7 9
4 4 2 5
2 3 4 7
5 10 4 4
3 9 1 1
1 4 5 9
8 9 3 3
2 2 1 6
8 9 1 4
Sample Output
0
0
2
1
1
1
0
1
2
HINT
题解:一看到题第一感觉仍然是莫队+树状数组,但是时间复杂度O(m*sqrt(n)*log(n)),承受不起啊,但是我们可以分块
对于原来的算法,修改时O(m*sqrt(n)*log(n))的,但是查询却是O(m*log(n))的,我们用分块相当于牺牲一点查询的时间,使修改更快一点
言归正传,我们只需要将权值分块,维护每个块内不同权值的种类数以及区间中每个权值的出现次数,然后查询时先查询[a,b]中间的块的种类数,在暴力统计两边的块内的出现次数,于是修改和查询都是O(m*sqrt(n))的了
别忘了特判a,b在一个块内的情况
从1开始的分块真的很别扭啊~
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
int n,m,siz;
struct node
{
int qa,qb,ql,qr,org;
}q[1000010];
int v[100010],sk[100010],s[100010],ans[1000010];
int rd()
{
int ret=0; char gc=getchar();
while(gc<'0'||gc>'9') gc=getchar();
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret;
}
bool cmp(node a,node b)
{
if((a.ql-1)/siz==(b.ql-1)/siz) return a.qr<b.qr;
return (a.ql-1)/siz<(b.ql-1)/siz;
}
int main()
{
n=rd(),m=rd();
siz=(int)sqrt((double)n);
int i,j;
for(i=1;i<=n;i++) v[i]=rd();
for(i=1;i<=m;i++) q[i].ql=rd(),q[i].qr=rd(),q[i].qa=rd(),q[i].qb=rd(),q[i].org=i;
sort(q+1,q+m+1,cmp);
int l=1,r=0;
for(i=1;i<=m;i++)
{
while(r<q[i].qr) r++,sk[(v[r]-1)/siz]+=(s[v[r]]==0),s[v[r]]++;
while(r>q[i].qr) s[v[r]]--,sk[(v[r]-1)/siz]-=(s[v[r]]==0),r--;
while(l>q[i].ql) l--,sk[(v[l]-1)/siz]+=(s[v[l]]==0),s[v[l]]++;
while(l<q[i].ql) s[v[l]]--,sk[(v[l]-1)/siz]-=(s[v[l]]==0),l++;
if((q[i].qa-1)/siz==(q[i].qb-1)/siz)
{
for(j=q[i].qa;j<=q[i].qb;j++) ans[q[i].org]+=(s[j]>0);
continue;
}
for(j=q[i].qa;j<=(q[i].qa-1)/siz*siz+siz&&j<=n;j++) ans[q[i].org]+=(s[j]>0);
for(j=(q[i].qb-1)/siz*siz+1;j<=q[i].qb;j++) ans[q[i].org]+=(s[j]>0);
for(j=(q[i].qa-1)/siz+1;j<(q[i].qb-1)/siz;j++) ans[q[i].org]+=sk[j];
}
for(i=1;i<=m;i++) printf("%d\n",ans[i]);
return 0;
}
【BZOJ3236】[Ahoi2013]作业
别的和上题都一样,就是新增一个求[l,r]中数值∈[a,b]的数的个数,这个怎么搞都可以吧~
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
int n,m,siz;
struct node
{
int qa,qb,ql,qr,org;
}q[1000010];
int v[100010],sk[100010],sv[100010],s[100010],ans[1000010],sum[1000010];
int rd()
{
int ret=0; char gc=getchar();
while(gc<'0'||gc>'9') gc=getchar();
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret;
}
bool cmp(node a,node b)
{
if((a.ql-1)/siz==(b.ql-1)/siz) return a.qr<b.qr;
return (a.ql-1)/siz<(b.ql-1)/siz;
}
int main()
{
n=rd(),m=rd();
siz=(int)sqrt((double)n);
int i,j;
for(i=1;i<=n;i++) v[i]=rd();
for(i=1;i<=m;i++) q[i].ql=rd(),q[i].qr=rd(),q[i].qa=rd(),q[i].qb=rd(),q[i].org=i;
sort(q+1,q+m+1,cmp);
int l=1,r=0;
for(i=1;i<=m;i++)
{
while(r<q[i].qr) r++,sk[(v[r]-1)/siz]+=(s[v[r]]==0),s[v[r]]++,sv[(v[r]-1)/siz]++;
while(r>q[i].qr) s[v[r]]--,sv[(v[r]-1)/siz]--,sk[(v[r]-1)/siz]-=(s[v[r]]==0),r--;
while(l>q[i].ql) l--,sk[(v[l]-1)/siz]+=(s[v[l]]==0),s[v[l]]++,sv[(v[l]-1)/siz]++;
while(l<q[i].ql) s[v[l]]--,sv[(v[l]-1)/siz]--,sk[(v[l]-1)/siz]-=(s[v[l]]==0),l++;
if((q[i].qa-1)/siz==(q[i].qb-1)/siz)
{
for(j=q[i].qa;j<=q[i].qb;j++) ans[q[i].org]+=(s[j]>0),sum[q[i].org]+=s[j];
continue;
}
for(j=q[i].qa;j<=(q[i].qa-1)/siz*siz+siz&&j<=n;j++) ans[q[i].org]+=(s[j]>0),sum[q[i].org]+=s[j];
for(j=(q[i].qb-1)/siz*siz+1;j<=q[i].qb;j++) ans[q[i].org]+=(s[j]>0),sum[q[i].org]+=s[j];
for(j=(q[i].qa-1)/siz+1;j<(q[i].qb-1)/siz;j++) ans[q[i].org]+=sk[j],sum[q[i].org]+=sv[j];
}
for(i=1;i<=m;i++) printf("%d %d\n",sum[i],ans[i]);
return 0;
}
【BZOJ3809/3236】Gty的二逼妹子序列 [Ahoi2013]作业 莫队算法+分块的更多相关文章
- 【bzoj3809/bzoj3236】Gty的二逼妹子序列/[Ahoi2013]作业 莫队算法+分块
原文地址:http://www.cnblogs.com/GXZlegend/p/6805252.html bzoj3809 题目描述 Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了 ...
- 【BZOJ-3809】Gty的二逼妹子序列 分块 + 莫队算法
3809: Gty的二逼妹子序列 Time Limit: 80 Sec Memory Limit: 28 MBSubmit: 1072 Solved: 292[Submit][Status][Di ...
- 【bzoj3809】Gty的二逼妹子序列
Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数. 为了方便,我们 ...
- 【BZOJ3809】Gty的二逼妹子序列 莫队 分块
题目描述 给你一个长度为\(n\)的数列,还有\(m\)个询问,对于每个询问\((l,r,a,b)\),输出区间\([l,r]\)有多少范围在\([a,b]\)的权值. \(n\leq 100000, ...
- 莫队p2 【bzoj3809】Gty的二逼妹子序列
发现一篇已经够长了...所以就放在这里吧... http://hzwer.com/5749.html ↑依然是看大牛题解过的 袜子那道题太简单了.... 然后被这道题超时卡了一段时间....... ...
- BZOJ3809:Gty的二逼妹子序列
浅谈莫队:https://www.cnblogs.com/AKMer/p/10374756.html 题目传送门:https://lydsy.com/JudgeOnline/problem.php?i ...
- [bzoj3809]Gty的二逼妹子序列_莫队_分块
Gty的二逼妹子序列 bzoj-3809 题目大意:给定一个n个正整数的序列,m次询问.每次询问一个区间$l_i$到$r_i$中,权值在$a_i$到$b_i$之间的数有多少个. 注释:$1\le n\ ...
- [bzoj3809]Gty的二逼妹子序列/[bzoj3236][Ahoi2013]作业
[bzoj3809]Gty的二逼妹子序列/[bzoj3236][Ahoi2013]作业 bzoj bzoj 题目大意:一个序列,m个询问在$[l,r]$区间的$[x,y]$范围内的数的个数/种类. ...
- BZOJ 3809: Gty的二逼妹子序列
3809: Gty的二逼妹子序列 Time Limit: 80 Sec Memory Limit: 28 MBSubmit: 1387 Solved: 400[Submit][Status][Di ...
随机推荐
- 在文件夹右键菜单里添加“DOS 到这里”这个菜单项
Windows Registry Editor Version 5.00 [HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Drive\shell\cmd]@="DO ...
- redis.windows.conf各项配置参数介绍 (九)
# 默认情况下,redis不是在后台模式运行的,如果需要在后台进程运行,把该项的值更改为yes,默认为no daemonize:是否以后台daemon方式运行 # 如redis服务以后台进程运行的时候 ...
- js解决跨站点脚本编制问题
1.前台处理(容易绕过): <script type="text/javascript"> $(document).ready(function(){ var url= ...
- vim如何选择ESC的键位绑定
vim除了hijk之外,按键频率最高的大概是Esc,本人已经有点Esc强迫症的兆头了.默认的Esc键远在边陲,按起来也忒麻烦了.怎么解决? 在google大神的帮助下,找到了两个方案: CapsLoc ...
- location 将多级目录下的文件转成一个文件
/ck-135-201-7142.html 指向/ck/135/201/7142.html [root@web01 www]# cat /app/server/nginx/conf/rewrite/d ...
- Java线程停止interrupt()方法
程序是很简易的.然而,在编程人员面前,多线程呈现出了一组新的难题,如果没有被恰当的解决,将导致意外的行为以及细微的.难以发现的错误.在本篇文章中,我们针对这些难题之一:如何中断一个正在运行的线程. 中 ...
- Qcon2017实录|Service Mesh:下一代微服务
https://zhuanlan.zhihu.com/p/30292372 数人云11月Meetup报名开启,看中西方大神如何论道云原生与微服务!本文作者敖小剑老师将在本次Meetup上继续分享Ser ...
- CentOS 7.0 关闭firewalld防火墙指令 及更换Iptables防火墙
CentOS 7.0 关闭firewalld防火墙指令 及更换Iptables防火墙 时间:2014-10-13 19:03:48 作者:哎丫丫 来源:哎丫丫数码网 查看:11761 评论:2 ...
- java线程阻塞问题排查方法
我开发的worker,每隔几个月线上都会阻塞一次,一直都没查出问题.今天终于了了这个心结.把解决过程总结下和大家分享. 首先用jstack命令打出这个进程的全部线程堆栈.拿到线程dump文件之后,搜索 ...
- 0059 Spring MVC与浏览器间的JSON数据转换--@RequestBody--@ResponseBody--MappingJacson2HttpMessageConverter
浏览器与服务器之间的数据交换有很多类型,不只是表单提交数据这一种,比如ajax技术就大量使用json.xml等,这时候就涉及到浏览器端和服务器端数据格式转换的问题,服务器端都是Java对象,需要把请求 ...