【BZOJ3809/3236】Gty的二逼妹子序列 [Ahoi2013]作业 莫队算法+分块
【BZOJ3809】Gty的二逼妹子序列
Description
Input
Output
对每个询问,单独输出一行,表示sl...sr中权值∈[a,b]的权值的种类数。
Sample Input
4 4 5 1 4 1 5 1 2 1
5 9 1 2
3 4 7 9
4 4 2 5
2 3 4 7
5 10 4 4
3 9 1 1
1 4 5 9
8 9 3 3
2 2 1 6
8 9 1 4
Sample Output
0
0
2
1
1
1
0
1
2
HINT
题解:一看到题第一感觉仍然是莫队+树状数组,但是时间复杂度O(m*sqrt(n)*log(n)),承受不起啊,但是我们可以分块
对于原来的算法,修改时O(m*sqrt(n)*log(n))的,但是查询却是O(m*log(n))的,我们用分块相当于牺牲一点查询的时间,使修改更快一点
言归正传,我们只需要将权值分块,维护每个块内不同权值的种类数以及区间中每个权值的出现次数,然后查询时先查询[a,b]中间的块的种类数,在暴力统计两边的块内的出现次数,于是修改和查询都是O(m*sqrt(n))的了
别忘了特判a,b在一个块内的情况
从1开始的分块真的很别扭啊~
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
int n,m,siz;
struct node
{
int qa,qb,ql,qr,org;
}q[1000010];
int v[100010],sk[100010],s[100010],ans[1000010];
int rd()
{
int ret=0; char gc=getchar();
while(gc<'0'||gc>'9') gc=getchar();
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret;
}
bool cmp(node a,node b)
{
if((a.ql-1)/siz==(b.ql-1)/siz) return a.qr<b.qr;
return (a.ql-1)/siz<(b.ql-1)/siz;
}
int main()
{
n=rd(),m=rd();
siz=(int)sqrt((double)n);
int i,j;
for(i=1;i<=n;i++) v[i]=rd();
for(i=1;i<=m;i++) q[i].ql=rd(),q[i].qr=rd(),q[i].qa=rd(),q[i].qb=rd(),q[i].org=i;
sort(q+1,q+m+1,cmp);
int l=1,r=0;
for(i=1;i<=m;i++)
{
while(r<q[i].qr) r++,sk[(v[r]-1)/siz]+=(s[v[r]]==0),s[v[r]]++;
while(r>q[i].qr) s[v[r]]--,sk[(v[r]-1)/siz]-=(s[v[r]]==0),r--;
while(l>q[i].ql) l--,sk[(v[l]-1)/siz]+=(s[v[l]]==0),s[v[l]]++;
while(l<q[i].ql) s[v[l]]--,sk[(v[l]-1)/siz]-=(s[v[l]]==0),l++;
if((q[i].qa-1)/siz==(q[i].qb-1)/siz)
{
for(j=q[i].qa;j<=q[i].qb;j++) ans[q[i].org]+=(s[j]>0);
continue;
}
for(j=q[i].qa;j<=(q[i].qa-1)/siz*siz+siz&&j<=n;j++) ans[q[i].org]+=(s[j]>0);
for(j=(q[i].qb-1)/siz*siz+1;j<=q[i].qb;j++) ans[q[i].org]+=(s[j]>0);
for(j=(q[i].qa-1)/siz+1;j<(q[i].qb-1)/siz;j++) ans[q[i].org]+=sk[j];
}
for(i=1;i<=m;i++) printf("%d\n",ans[i]);
return 0;
}
【BZOJ3236】[Ahoi2013]作业
别的和上题都一样,就是新增一个求[l,r]中数值∈[a,b]的数的个数,这个怎么搞都可以吧~
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
int n,m,siz;
struct node
{
int qa,qb,ql,qr,org;
}q[1000010];
int v[100010],sk[100010],sv[100010],s[100010],ans[1000010],sum[1000010];
int rd()
{
int ret=0; char gc=getchar();
while(gc<'0'||gc>'9') gc=getchar();
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret;
}
bool cmp(node a,node b)
{
if((a.ql-1)/siz==(b.ql-1)/siz) return a.qr<b.qr;
return (a.ql-1)/siz<(b.ql-1)/siz;
}
int main()
{
n=rd(),m=rd();
siz=(int)sqrt((double)n);
int i,j;
for(i=1;i<=n;i++) v[i]=rd();
for(i=1;i<=m;i++) q[i].ql=rd(),q[i].qr=rd(),q[i].qa=rd(),q[i].qb=rd(),q[i].org=i;
sort(q+1,q+m+1,cmp);
int l=1,r=0;
for(i=1;i<=m;i++)
{
while(r<q[i].qr) r++,sk[(v[r]-1)/siz]+=(s[v[r]]==0),s[v[r]]++,sv[(v[r]-1)/siz]++;
while(r>q[i].qr) s[v[r]]--,sv[(v[r]-1)/siz]--,sk[(v[r]-1)/siz]-=(s[v[r]]==0),r--;
while(l>q[i].ql) l--,sk[(v[l]-1)/siz]+=(s[v[l]]==0),s[v[l]]++,sv[(v[l]-1)/siz]++;
while(l<q[i].ql) s[v[l]]--,sv[(v[l]-1)/siz]--,sk[(v[l]-1)/siz]-=(s[v[l]]==0),l++;
if((q[i].qa-1)/siz==(q[i].qb-1)/siz)
{
for(j=q[i].qa;j<=q[i].qb;j++) ans[q[i].org]+=(s[j]>0),sum[q[i].org]+=s[j];
continue;
}
for(j=q[i].qa;j<=(q[i].qa-1)/siz*siz+siz&&j<=n;j++) ans[q[i].org]+=(s[j]>0),sum[q[i].org]+=s[j];
for(j=(q[i].qb-1)/siz*siz+1;j<=q[i].qb;j++) ans[q[i].org]+=(s[j]>0),sum[q[i].org]+=s[j];
for(j=(q[i].qa-1)/siz+1;j<(q[i].qb-1)/siz;j++) ans[q[i].org]+=sk[j],sum[q[i].org]+=sv[j];
}
for(i=1;i<=m;i++) printf("%d %d\n",sum[i],ans[i]);
return 0;
}
【BZOJ3809/3236】Gty的二逼妹子序列 [Ahoi2013]作业 莫队算法+分块的更多相关文章
- 【bzoj3809/bzoj3236】Gty的二逼妹子序列/[Ahoi2013]作业 莫队算法+分块
原文地址:http://www.cnblogs.com/GXZlegend/p/6805252.html bzoj3809 题目描述 Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了 ...
- 【BZOJ-3809】Gty的二逼妹子序列 分块 + 莫队算法
3809: Gty的二逼妹子序列 Time Limit: 80 Sec Memory Limit: 28 MBSubmit: 1072 Solved: 292[Submit][Status][Di ...
- 【bzoj3809】Gty的二逼妹子序列
Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数. 为了方便,我们 ...
- 【BZOJ3809】Gty的二逼妹子序列 莫队 分块
题目描述 给你一个长度为\(n\)的数列,还有\(m\)个询问,对于每个询问\((l,r,a,b)\),输出区间\([l,r]\)有多少范围在\([a,b]\)的权值. \(n\leq 100000, ...
- 莫队p2 【bzoj3809】Gty的二逼妹子序列
发现一篇已经够长了...所以就放在这里吧... http://hzwer.com/5749.html ↑依然是看大牛题解过的 袜子那道题太简单了.... 然后被这道题超时卡了一段时间....... ...
- BZOJ3809:Gty的二逼妹子序列
浅谈莫队:https://www.cnblogs.com/AKMer/p/10374756.html 题目传送门:https://lydsy.com/JudgeOnline/problem.php?i ...
- [bzoj3809]Gty的二逼妹子序列_莫队_分块
Gty的二逼妹子序列 bzoj-3809 题目大意:给定一个n个正整数的序列,m次询问.每次询问一个区间$l_i$到$r_i$中,权值在$a_i$到$b_i$之间的数有多少个. 注释:$1\le n\ ...
- [bzoj3809]Gty的二逼妹子序列/[bzoj3236][Ahoi2013]作业
[bzoj3809]Gty的二逼妹子序列/[bzoj3236][Ahoi2013]作业 bzoj bzoj 题目大意:一个序列,m个询问在$[l,r]$区间的$[x,y]$范围内的数的个数/种类. ...
- BZOJ 3809: Gty的二逼妹子序列
3809: Gty的二逼妹子序列 Time Limit: 80 Sec Memory Limit: 28 MBSubmit: 1387 Solved: 400[Submit][Status][Di ...
随机推荐
- ToString(“N2”)和ToString(“0.00”)之间的区别
看来N会包含数千个分隔符,而0.00则不会. N2将以500.00的方式工作,但是当您有5000.00时,N2将显示为 5,000.00 代替 5000.00 If you do this inste ...
- [svc]salt基本原理
转载自:来自:http://tech.mainwise.cn/?p=438 说明:salt是一个异构平台基础设置管理工具(虽然我们通常只用在Linux上),使用轻量级的通讯器ZMQ,用Python写成 ...
- sql server 列修改null 变成not null
ALTER TABLE [table_name] ALTER COLUMN [column_name] [datetime] NOT NULL --datetime是列的类型
- 每日英语:Online Education a New Frontier in China
In a country as obsessed with education as China, it makes sense that online teaching has huge poten ...
- 2016 年 Java 优秀文章
https://www.ibm.com/developerworks/cn/java/j-2016-java-good-article/index.html
- 一份不错的php面试题(附答案)(笔试题)
一.基础题1. 写出如下程序的输出结果 <?php $str1 = null; $str2 = false; echo $str1==$str2 ? '相等' : '不相等'; $str3 = ...
- https 单向双向认证说明_数字证书, 数字签名, SSL(TLS) , SASL_转
转自:https 单向双向认证说明_数字证书, 数字签名, SSL(TLS) , SASL 因为项目中要用到TLS + SASL 来做安全认证层. 所以看了一些网上的资料, 这里做一个总结. 1. 首 ...
- 网卡优化RPS/RFS
网卡优化 RSS receive side scaling,网卡多队列,需要硬件支持.网卡接收到网络数据包后,要发送一个硬件中断,通知CPU取数据包.默认配置,都是由CPU0去做. RPS recei ...
- IOS 中微信 网页授权报 key[也就是code]失效 解决办法
枪魂微信平台ios手机点击返回 网页授权失败,报key失效.已经解决,原因是授权key只能使用一次,再次使用就会失效. 解决办法:第一次从菜单中进行授权时,用session记录key和open_id. ...
- JavaScript重载
在Javascript 中,每个函数都有一个隐含的对象arguments,表示给函数 实际传给的参数 ,那么我们可以用 arguments来实现函数的重载 <!DOCTYPE html PUBL ...