5501 环路运输 0x50「动态规划」例题

描述

在一条环形公路旁均匀地分布着N座仓库,编号为1~N,编号为 i 的仓库与编号为 j 的仓库之间的距离定义为 dist(i,j)=min⁡(|i-j|,N-|i-j|),也就是逆时针或顺时针从 i 到 j 中较近的一种。每座仓库都存有货物,其中编号为 i 的仓库库存量为 A_i。在 i 和 j 两座仓库之间运送货物需要的代价为 A_i+A_j+dist(i,j)。求在哪两座仓库之间运送货物需要的代价最大。1≤N≤10^6,1<=Ai<=10^7。

输入格式

第一行一个整数N,第二行N个整数A1~AN。

输出格式

一个整数,表示最大代价。

样例输入

5
1 8 6 2 5

样例输出

15

题意:

n个仓库环形排列,每个仓库有一个库存量。i和j仓库之间运送货物的代价是Ai + Aj + dist(i, j)。dist(i, j) = min(|i - j|, N - |i - j|)

要求哪两个仓库之间运送货物代价最大。

思路:

在1和n之间把环断开,复制一倍接在末尾。原来环形路上的两个点i和j,如果i - j <= N / 2,那么新的公路上,他们的代价仍然是Ai + Aj + i - j

如果i - j > N / 2, 那么在原来环形路上就要反方向,相当于在新的道路上,i和j+N之间运送货物。代价就是Ai + Aj+n + j + N - i

所以原问题就可以转化为:长度为2N的直线公路上,满足1 <= j < i <= 2N 并且 i - j <= N / 2 的仓库i和j之间运送货物,使得代价 Ai + Aj + i - j最大

我们可以枚举i,找到对应的Aj - j最大的j。

枚举i的过程中如果继续枚举j,显然会超时。可以考虑使用单调队列进行优化。

我们可以比较k和j, k < j < i并且Ak - k < Aj - j , 那么对于所有大于等于i的右端点,k永远不会成为最优选择。因为不但Ak - k较小,而且k离i更远,更容易超过N/2的限制,即j的生存能力比k强。所以j出现之后,k就是一个完全无用的位置。

能够成为最优选择的策略集合一定是一个“下标位置递增,对应的Ai - i也递增”的序列。

那么我们从前向后扫描,对于每个i 执行3 个步骤:

1.判断队头决策与i的距离是否超出N/2的限制,若超出则出队。

2.此时的队头元素就是右端点为i时,左端点j的最优选择。

3.删除队尾决策,队尾对应的Ak - k 小于Ai- i, 把i作为一个新的决策入队。

可以把原来的算法优化至O(n)

 //#include <bits/stdc++.h>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<stdio.h>
#include<cstring>
#include<vector>
#include<map> #define inf 0x3f3f3f3f
using namespace std;
typedef long long LL; int n;
const int maxn = 1e6 + ;
int a[maxn * ], q[maxn * ]; int main()
{
scanf("%d", &n);
for(int i = ; i <= n; i++){
scanf("%d", &a[i]);
}
for(int i = n + ; i <= * n; i++){
a[i] = a[i - n];
} //memset(dp, 0, sizeof(dp));
int l = , r = , ans = ;
q[] = ;
for(int i = ; i <= * n; i++){
while(l <= r && q[l] < i - n / )l++;
ans = max(ans, a[i] + a[q[l]] + i - q[l]);
while(l < r && a[i] - i >= a[q[r]] - q[r]) r--;
q[++r] = i;
} printf("%d\n", ans);
return ;
}

5501环路运输【(环结构)线性DP】【队列优化】的更多相关文章

  1. [bzoj1044][HAOI2008][木棍分割] (二分+贪心+dp+队列优化)

    Description 有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连接处, 砍完后n根木棍被分成了很多段,要求满足总长度最大的一段长 ...

  2. [luogu1772 ZJOI2006] 物流运输 (最短路 线性dp)

    题目描述 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪. ...

  3. Bellman-Ford算法及其队列优化(SPFA)

    一.算法概述 Bellman-Ford算法解决的是一般情况下的单源最短路径问题.所谓单源最短路径问题:给定一个图G=(V,E),我们希望找到从给定源结点s属于V到每个结点v属于V的最短路径.单源最短路 ...

  4. poj2228 Naptime【(环结构)线性DP】

    Naptime Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:3374   Accepted: 1281 Descriptio ...

  5. 单调队列+线性dp题Watching Fireworks is Fun (CF372C)

    一.Watching Fireworks is Fun(紫题) 题目:一个城镇有n个区域,从左到右1编号为n,每个区域之间距离1个单位距离节日中有m个烟火要放,给定放的地点ai,时间ti当时你在x,那 ...

  6. 【NOIP2017】跳房子 题解(单调队列优化线性DP)

    前言:把鸽了1个月的博客补上 ----------------- 题目链接 题目大意:机器人的灵敏性为$d$.每次可以花费$g$个金币来改造机器人,那么机器人向右跳的范围为$[min(d-g,1),m ...

  7. [DP浅析]线性DP初步 - 2 - 单调队列优化

    目录 #0.0 前置知识 #1.0 简单介绍 #1.1 本质 & 适用范围 #1.2 适用方程 & 条件 #2.0 例题讲解 #2.1 P3572 [POI2014]PTA-Littl ...

  8. P3387缩点(tarjan+拓扑排序+线性dp)

    题目描述 给定一个 n个点 m 条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大.你只需要求出这个权值和. 允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次. 输入 ...

  9. 1023: [SHOI2008]cactus仙人掌图(DP+单调队列优化)

    这道题吗= =首先解决了我多年以来对仙人掌图的疑问,原来这种高大上的东西原来是这个啊= = 然后,看到这种题,首先必须的就是缩点= = 缩点完之后呢,变成在树上找最长路了= =直接树形dp了 那么那些 ...

随机推荐

  1. Atitit. 软件GUI按钮与仪表盘--web服务器区--获取apache配置文件路径 linux and apache的启动、停止、重启

    Atitit.   软件GUI按钮与仪表盘--web服务器区--获取apache配置文件路径 linux and apache的启动.停止.重启 可以通过"netstat -anp" ...

  2. [svc]linux查看主板型号及内存硬件信息

    公司服务器内存不够用了. 想看看买啥型号的. 购买内存条注意点: ddr3 or4 频率 块钱. 内存槽及内存条: dmidecode |grep -A16 "Memory Device$& ...

  3. python 快速获取文件类型

  4. CentOS minimal 版安装图形界面的步骤分享,中文语言包

    1.连接网络: CentOS minimal.iso安装好后,进入终端,默认是不开网络的, 首先启用网卡, 自动获取ip. ifconfig eth0 up dhclient eth0 这时候再 if ...

  5. 基于jQuery动画二级下拉导航菜单

    春节回来给大家分享一款基于jQuery动画二级下拉导航菜单.鼠标经过的时候以动画的形式出现二级导航.效果图如下: 在线预览   源码下载 实现的代码. html代码: <div id=" ...

  6. linux回调函数的使用

    #include<stdio.h> #include<pthread.h> #include<unistd.h> pthread_mutex_t mutex; pt ...

  7. Spring Boot - can't start with embedded tomcat error

    com.fasterxml.jackson.core版本问题,更新最新版本即可. I had the same problem, it seems that: <dependency> & ...

  8. 利用U盘给Intel NUC安装CentOS

    一,UltraISO(用来制作 U 盘启动) 需要新版9.6 下载地址为:http://www.onlinedown.net/soft/614.htm 软件注册码:王涛 7C81-1689-4046- ...

  9. NPOI导入Excel日期格式的处理 - 附类型格式匹配表

    传统操作Excel方法在部署的时候遇到很多问题,如目标主机需要安装Excel.64位电脑不支持.需要安装相关驱动程序等.所以我们一般会使用开源的NPOI来替代传统的Excel操作方法,NPOI的优点是 ...

  10. 第二百七十二节,Tornado框架-iframe标签框架伪造ajax

    Tornado框架-iframe标签框架伪造ajax html <!DOCTYPE html> <html> <head lang="en"> ...