5501环路运输【(环结构)线性DP】【队列优化】
5501 环路运输 0x50「动态规划」例题
描述
在一条环形公路旁均匀地分布着N座仓库,编号为1~N,编号为 i 的仓库与编号为 j 的仓库之间的距离定义为 dist(i,j)=min(|i-j|,N-|i-j|),也就是逆时针或顺时针从 i 到 j 中较近的一种。每座仓库都存有货物,其中编号为 i 的仓库库存量为 A_i。在 i 和 j 两座仓库之间运送货物需要的代价为 A_i+A_j+dist(i,j)。求在哪两座仓库之间运送货物需要的代价最大。1≤N≤10^6,1<=Ai<=10^7。
输入格式
第一行一个整数N,第二行N个整数A1~AN。
输出格式
一个整数,表示最大代价。
样例输入
5
1 8 6 2 5
样例输出
15
题意:
n个仓库环形排列,每个仓库有一个库存量。i和j仓库之间运送货物的代价是Ai + Aj + dist(i, j)。dist(i, j) = min(|i - j|, N - |i - j|)
要求哪两个仓库之间运送货物代价最大。
思路:
在1和n之间把环断开,复制一倍接在末尾。原来环形路上的两个点i和j,如果i - j <= N / 2,那么新的公路上,他们的代价仍然是Ai + Aj + i - j
如果i - j > N / 2, 那么在原来环形路上就要反方向,相当于在新的道路上,i和j+N之间运送货物。代价就是Ai + Aj+n + j + N - i
所以原问题就可以转化为:长度为2N的直线公路上,满足1 <= j < i <= 2N 并且 i - j <= N / 2 的仓库i和j之间运送货物,使得代价 Ai + Aj + i - j最大
我们可以枚举i,找到对应的Aj - j最大的j。
枚举i的过程中如果继续枚举j,显然会超时。可以考虑使用单调队列进行优化。
我们可以比较k和j, k < j < i并且Ak - k < Aj - j , 那么对于所有大于等于i的右端点,k永远不会成为最优选择。因为不但Ak - k较小,而且k离i更远,更容易超过N/2的限制,即j的生存能力比k强。所以j出现之后,k就是一个完全无用的位置。
能够成为最优选择的策略集合一定是一个“下标位置递增,对应的Ai - i也递增”的序列。
那么我们从前向后扫描,对于每个i 执行3 个步骤:
1.判断队头决策与i的距离是否超出N/2的限制,若超出则出队。
2.此时的队头元素就是右端点为i时,左端点j的最优选择。
3.删除队尾决策,队尾对应的Ak - k 小于Ai- i, 把i作为一个新的决策入队。
可以把原来的算法优化至O(n)
//#include <bits/stdc++.h>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<stdio.h>
#include<cstring>
#include<vector>
#include<map> #define inf 0x3f3f3f3f
using namespace std;
typedef long long LL; int n;
const int maxn = 1e6 + ;
int a[maxn * ], q[maxn * ]; int main()
{
scanf("%d", &n);
for(int i = ; i <= n; i++){
scanf("%d", &a[i]);
}
for(int i = n + ; i <= * n; i++){
a[i] = a[i - n];
} //memset(dp, 0, sizeof(dp));
int l = , r = , ans = ;
q[] = ;
for(int i = ; i <= * n; i++){
while(l <= r && q[l] < i - n / )l++;
ans = max(ans, a[i] + a[q[l]] + i - q[l]);
while(l < r && a[i] - i >= a[q[r]] - q[r]) r--;
q[++r] = i;
} printf("%d\n", ans);
return ;
}
5501环路运输【(环结构)线性DP】【队列优化】的更多相关文章
- [bzoj1044][HAOI2008][木棍分割] (二分+贪心+dp+队列优化)
Description 有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连接处, 砍完后n根木棍被分成了很多段,要求满足总长度最大的一段长 ...
- [luogu1772 ZJOI2006] 物流运输 (最短路 线性dp)
题目描述 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪. ...
- Bellman-Ford算法及其队列优化(SPFA)
一.算法概述 Bellman-Ford算法解决的是一般情况下的单源最短路径问题.所谓单源最短路径问题:给定一个图G=(V,E),我们希望找到从给定源结点s属于V到每个结点v属于V的最短路径.单源最短路 ...
- poj2228 Naptime【(环结构)线性DP】
Naptime Time Limit: 1000MS Memory Limit: 65536K Total Submissions:3374 Accepted: 1281 Descriptio ...
- 单调队列+线性dp题Watching Fireworks is Fun (CF372C)
一.Watching Fireworks is Fun(紫题) 题目:一个城镇有n个区域,从左到右1编号为n,每个区域之间距离1个单位距离节日中有m个烟火要放,给定放的地点ai,时间ti当时你在x,那 ...
- 【NOIP2017】跳房子 题解(单调队列优化线性DP)
前言:把鸽了1个月的博客补上 ----------------- 题目链接 题目大意:机器人的灵敏性为$d$.每次可以花费$g$个金币来改造机器人,那么机器人向右跳的范围为$[min(d-g,1),m ...
- [DP浅析]线性DP初步 - 2 - 单调队列优化
目录 #0.0 前置知识 #1.0 简单介绍 #1.1 本质 & 适用范围 #1.2 适用方程 & 条件 #2.0 例题讲解 #2.1 P3572 [POI2014]PTA-Littl ...
- P3387缩点(tarjan+拓扑排序+线性dp)
题目描述 给定一个 n个点 m 条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大.你只需要求出这个权值和. 允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次. 输入 ...
- 1023: [SHOI2008]cactus仙人掌图(DP+单调队列优化)
这道题吗= =首先解决了我多年以来对仙人掌图的疑问,原来这种高大上的东西原来是这个啊= = 然后,看到这种题,首先必须的就是缩点= = 缩点完之后呢,变成在树上找最长路了= =直接树形dp了 那么那些 ...
随机推荐
- Altera Quartus II下载中途失败
1.Altera 的quartus II 下载程序时中途失败,有可能是程序写的不对(缺少初始状态,else补全等等) 2.下载程序pof最好也用英文命名,再下载.
- prompt() 方法
定义和用法 prompt() 方法用于显示可提示用户进行输入的对话框. 语法 prompt(text,defaultText) 参数 描述 text 可选.要在对话框中显示的纯文本(而不是 HTML ...
- java中Keytool的使用总结 (加密 密钥(key)和证书(certificates))
http://blog.chinaunix.net/uid-17102734-id-2830223.html
- PHP学习记录第一篇:Ubuntu14.04下LAMP环境的搭建
最近一段时间会学习一下PHP全栈开发,将会写一系列的文章来总结学习的过程,以自勉. 第一篇记录一下LAMP环境的安装 0. 安装Apache Web服务器 安装之前先更新一下系统 sudo apt-g ...
- rpc 理解
RPC=Remote Produce Call 是一种技术的概念名词. HTTP是一种协议,RPC可以通过HTTP来实现,也可以通过Socket自己实现一套协议来实现. rpc是一种概念,http也是 ...
- 商派onex本地部署无法进入的问题
商派最新版的ONex本地虚拟机部署项目无法进入注册的问题解决 进入项目的database.php文件,复制host的值 vim /etc/hosts,将hosts内容添加到/etc/hosts里面去就 ...
- php服务器环境变量
可以把一些配置写到apache或nginx的配置里,然后在代码里判断环境变量来实现开发环境和线上环境的切换. 比如在本地可以 SetEnv APP_ENV local线上则 SetEnv APP_EN ...
- sama5d3 环境检测 adc测试
#include <stdio.h>#include <stdlib.h>#include <unistd.h>#include <string.h># ...
- asp.net 简单分页打印
<html> <head> <title>看看</title> <meta http-equiv="Content-Type" ...
- could not find com.android.support.appcompat-v7:23.4.0
导入别人的工程到AS中,出现错误,是由于android studio的版本比所加载的工程所使用的版本低,有些包不是最新的. 我的android studio这个包的版本是 v7:23.1.1 所以需要 ...