题目链接:5693

题目链接:5712

对于这个D game。注意消除之后两遍的序列是可以拼合到一起的!我们可以想到有区间DP的做法。我们设\(f[i][j]\)表示区间i,j可以被消除。

显然如果这个区间可以被消除,则操作一定可以被分解成一次消除两个k1次,一次消除三个k2次。所以我们只考虑消除两个和消除三个的情况即可。

开始可以把公差放进set里面,方便之后查询。

具体转移见代码。

处理完哪些区间可以被消除之后,我们可以利用贪心来计算最大消除的数量。(要先把可行区间放入到一个vector里面,然后排序,按照长度为第一关键字,左端点为第二关键字。因为大区间一定覆盖它里面的小区间,所以我们只要遇到自己区间已经被计算过了就不用计算这整个区间了)。

代码如下:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<set>
#include<vector>
#define MAXN 310
using namespace std;
int t,n,m,cur,ans;
struct Edge{int l,r,dis;};
int a[MAXN],f[MAXN][MAXN],done[MAXN],dp[MAXN];
set<int>s;
vector<Edge>v;
inline bool cmp(struct Edge x,struct Edge y)
{
if(x.dis==y.dis) return x.l<y.l;
return x.dis>y.dis;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
#endif
scanf("%d",&t);
while(t--)
{
ans=0;
s.clear();v.clear();
memset(f,0,sizeof(f));
memset(done,0,sizeof(done));
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d",&a[i]),f[i][i-1]=1;
for(int i=1;i<=m;i++) scanf("%d",&cur),s.insert(cur);
for(int i=1;i<=n;i++)
{
for(int l=1;l+i<=n;l++)
{
int r=l+i;
//printf("l=%d r=%d\n",l,r);
if(f[l+1][r-1]&&s.count(a[r]-a[l])) f[l][r]=1;
if(!f[l][r])
{
for(int k=l+1;k<=r-1;k++)
{
int cha1=a[r]-a[k],cha2=a[k]-a[l];
if((f[l][k-1]&&f[k][r])||(f[l+1][k-1]&&f[k+1][r-1]&&cha1==cha2&&s.count(cha1)))
{f[l][r]=1;break;}
}
}
}
}
for(int i=1;i<=n-1;i++)
for(int j=i+1;j<=n;j++)
if(f[i][j])
v.push_back((Edge){i,j,j-i+1});
sort(v.begin(),v.end(),cmp);
int cur=0;
for(int i=0;i<v.size();i++)
{
bool flag=true;
for(int j=v[i].l;j<=v[i].r;j++)
if(done[j]==1)
{flag=false;break;}
if(flag==false) continue;
for(int j=v[i].l;j<=v[i].r;j++)
done[j]=1;
}
for(int i=1;i<=n;i++) if(done[i]) ans++;
printf("%d\n",ans);
}
return 0;
}

然后对于那个加强版。

我想的是因为它的公差的种类数量很少,所以我想的是直接记录一下哪个区间里面有多少种公差,那么就知道了消除这个区间至少需要多少次。但是这样的话没有办法判断一次消除到底有没有满足消除数量在min,max范围内。。。。

所以说这个题我还木有A掉。。。。但是在网上也没有找到题解。。。。就先把自己WA的代码放在这里好了。。。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<set>
#include<vector>
#include<map>
#define MAXN 100
using namespace std;
int t,n,m,cur,ans,minn,maxx,cnt,kkk;
struct Edge{int l,r,dis;};
struct Node{int sum[40];}node[MAXN][MAXN];
int a[MAXN],f[MAXN][MAXN],done[MAXN],dp[MAXN];
set<int>s;
vector<Edge>v;
map<int,int>id;
inline bool cmp(struct Edge x,struct Edge y)
{
if(x.dis==y.dis) return x.l<y.l;
return x.dis>y.dis;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
#endif
scanf("%d",&t);
while(t--)
{
kkk++;
ans=cnt=0;
s.clear();v.clear();
memset(f,0,sizeof(f));
memset(done,0,sizeof(done));
scanf("%d%d%d%d",&n,&m,&minn,&maxx);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=m;i++) scanf("%d",&cur),s.insert(cur),id[cur]=i;
for(int i=1;i<=n;i++)
{
f[i][i-1]=1;
if(s.count(a[i+1]-a[i]))
node[i][i-1].sum[id[a[i+1]-a[i]]]=1;
}
for(int i=1;i<=n;i++)
{
for(int l=1;l+i<=n;l++)
{
int r=l+i;
if(f[l+1][r-1]&&s.count(a[r]-a[l])&&a[r]!=a[r-1]&&a[l]!=a[l+1])
{
f[l][r]=1;
for(int k=1;k<=32;k++) node[l][r].sum[k]=node[l+1][r-1].sum[k];
node[l][r].sum[id[a[r]-a[l]]]=1;
}
vector<int>put,cur_ans;
if(!f[l][r])
{
for(int k=l+1;k<=r-1;k++)
{
int cha1=a[r]-a[k],cha2=a[k]-a[l];
if(f[l][k-1]&&f[k][r]&&a[k]!=a[k-1])
{
f[l][r]=1;
put.clear();
for(int p=1;p<=32;p++)
if(node[l][k-1].sum[p]||node[k][r].sum[p])
put.push_back(p);
if(cur_ans.size()==0)
for(int q=0;q<put.size();q++)
cur_ans.push_back(put[q]);
if(cur_ans.size()!=0&&put.size()<cur_ans.size())
{
cur_ans.clear();
for(int q=0;q<put.size();q++)
cur_ans.push_back(put[q]);
}
}
if(f[l+1][k-1]&&f[k+1][r-1]&&cha1==cha2&&s.count(cha1))
{
if(a[l]==a[l+1]||a[k-1]==a[k]||a[k]==a[k+1]||a[r-1]==a[r]) continue;
f[l][r]=1;
put.clear();
for(int p=1;p<=32;p++)
if(node[l+1][k-1].sum[p]||node[k+1][r-1].sum[p]||p==id[cha1])
put.push_back(p);
if(cur_ans.size()==0)
for(int q=0;q<put.size();q++)
cur_ans.push_back(put[q]);
if(cur_ans.size()!=0&&put.size()<cur_ans.size())
{
cur_ans.clear();
for(int q=0;q<put.size();q++)
cur_ans.push_back(put[q]);
}
}
}
}
if(f[l][r])
for(int k=0;k<cur_ans.size();k++)
node[l][r].sum[cur_ans[k]]=1;
}
}
for(int i=1;i<=n-1;i++)
for(int j=i+1;j<=n;j++)
if(f[i][j])
v.push_back((Edge){i,j,j-i+1});
sort(v.begin(),v.end(),cmp);
int cnt=0;
for(int i=0;i<v.size();i++)
{
if(v[i].dis<minn) continue;
//int k1=v[i].dis/minn;
//if((maxx-minn)*k<v[i].dis-k*minn) continue;
int k=v[i].dis/maxx+(v[i].dis%maxx==0?0:1);
if((v[i].dis%maxx!=0)&&(v[i].dis%maxx+(k-1)*(maxx-minn)<minn)) continue;
bool flag=true;
for(int j=v[i].l;j<=v[i].r;j++)
if(done[j]==1)
{flag=false;break;}
if(flag==false) continue;
for(int j=v[i].l;j<=v[i].r;j++)
done[j]=1;
for(int j=1;j<=32;j++)
if(node[v[i].l][v[i].r].sum[j])
cnt++;
}
for(int i=1;i<=n;i++) if(done[i]) ans++;
printf("Case #%d:\n%d %d\n",kkk,ans,cnt);
}
return 0;
}

hdu5693 D game&&hdu 5712 D++ game的更多相关文章

  1. HDOJ 2111. Saving HDU 贪心 结构体排序

    Saving HDU Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  2. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  3. hdu 4859 海岸线 Bestcoder Round 1

    http://acm.hdu.edu.cn/showproblem.php?pid=4859 题目大意: 在一个矩形周围都是海,这个矩形中有陆地,深海和浅海.浅海是可以填成陆地的. 求最多有多少条方格 ...

  4. HDU 4569 Special equations(取模)

    Special equations Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  5. HDU 4006The kth great number(K大数 +小顶堆)

    The kth great number Time Limit:1000MS     Memory Limit:65768KB     64bit IO Format:%I64d & %I64 ...

  6. HDU 1796How many integers can you find(容斥原理)

    How many integers can you find Time Limit:5000MS     Memory Limit:32768KB     64bit IO Format:%I64d ...

  7. hdu 4481 Time travel(高斯求期望)(转)

    (转)http://blog.csdn.net/u013081425/article/details/39240021 http://acm.hdu.edu.cn/showproblem.php?pi ...

  8. HDU 3791二叉搜索树解题(解题报告)

    1.题目地址: http://acm.hdu.edu.cn/showproblem.php?pid=3791 2.参考解题 http://blog.csdn.net/u013447865/articl ...

  9. hdu 4329

    problem:http://acm.hdu.edu.cn/showproblem.php?pid=4329 题意:模拟  a.     p(r)=   R'/i   rel(r)=(1||0)  R ...

随机推荐

  1. MaxScript 学习笔记【有转载】

    1. string string类型的变量是一个数组,下列操作合法:strName = $.name -- output: "Shemmy_03" strName[1] --得到字 ...

  2. 迷你MVVM框架 avalonjs 组件编写指南

    avalon经过半年的宣传,已经有不少公司在使用avalon应用于它们内外网应用或移动项目,比较大牌的客户有百度,搜狐,金山,边缘,去哪儿--最近成为去哪儿的前端架构师后,掌握更多资源,可以随使抓个人 ...

  3. 【原】Coursera—Andrew Ng机器学习—Week 6 习题—Advice for applying machine learning

    [1] 诊断的作用 [2]过拟合 [3] [4] 高偏差bias,欠拟合underfitting 高方差variance,过拟合overfitting [5]参数λ Answer:  λ太大,则参数都 ...

  4. 前端开发之JavaScript HTML DOM理论篇一

    主要内容: 1.DOM简介 2.DOM 节点 3.DOM 方法和属性 4.DOM 访问和修改 一.DOM简介 1.什么是 DOM? DOM 是 W3C(万维网联盟)的标准. DOM 定义了访问 HTM ...

  5. Java Socket编程之TCP

    基于TCP的Socket通信: 服务器端: 创建一个服务器端Socket,即ServerSocket,指定绑定的端口,并监听此端口 调用accept()方法开始监听,等待客户端的连接 连接建立后,通过 ...

  6. Android——eclipse共享library以及导出jar包[转]

    目录(?)[-] 一apk之间共享Class 二apk导出jar包   android的apk在在eclipse上进行开发的时候,有时候需要import其它包中的一些class,正常的方法就是在jav ...

  7. Simple Cubemap Reflection

    [Simple Cubemap Reflection] Cubemap加在MainTex上,所以Property需要按如下定义: 注意_Cubemap的类型是CUBE. 使用Cubemap,需要计算反 ...

  8. ubuntu 重启显卡报错 nvidia

    1.我装玩显卡以后重启报错了 解决了5个小时才解决,先贴个当时报错的图 第一个图是没有加nomodeset 出先的 当你出现第二个图片的时候证明你离成功不远了 从头开始: 1.开机,出现 ubuntu ...

  9. $_SERVER['HTTP_REFERER']

    $_SERVER['HTTP_REFERER']//获取前一个页面的url地址

  10. mvc注解验证

    前端: @{ Layout = null;}@using System.Activities.Expressions@model MvcApplication1.Models.News<!DOC ...