【BZOJ】3527: [Zjoi2014]力 FFT
【参考】「ZJOI2014」力 - FFT by menci
【算法】FFT处理卷积
【题解】将式子代入后,化为Ej=Aj-Bj。
Aj=Σqi*[1/(i-j)^2],i=1~j-1。
令f(i)=qi,g(i)=1/i^2,定义f(0)=g(0)=0(方便卷积)。
Aj=Σf(i)*g(j-i),i=0~j-1,标准的卷积形式。
而对于Bj,将g反转后就是和为i+n-1的标准卷积形式了。
第一次FFT后,记得对a数组后半部分清零后再进行第二次FFT。
复杂度O(n log n)。
#include<cstdio>
#include<algorithm>
#include<complex>
#include<cmath>
using namespace std;
const int maxn=;
const double PI=acos(-);
complex<double>a1[maxn],a2[maxn];
int n;
double ans[maxn],b1[maxn],b2[maxn];
namespace fft{
complex<double>o[maxn],oi[maxn];
void init(int n){
for(int k=;k<n;k++)o[k]=complex<double>(cos(*PI*k/n),sin(*PI*k/n)),oi[k]=conj(o[k]);
}
void transform(complex<double>*a,int n,complex<double>*o){
int k=;
while((<<k)<n)k++;
for(int i=;i<n;i++){
int t=;
for(int j=;j<k;j++)if(i&(<<j))t|=(<<(k-j-));
if(i<t)swap(a[i],a[t]);
}
for(int l=;l<=n;l*=){
int m=l/;
for(complex<double>*p=a;p!=a+n;p+=l){
for(int i=;i<m;i++){
complex<double>t=o[n/l*i]*p[i+m];
p[i+m]=p[i]-t;
p[i]+=t;
}
}
}
}
void dft(complex<double>*a,int n){transform(a,n,o);}
void idft(complex<double>*a,int n){transform(a,n,oi);for(int i=;i<n;i++)a[i]/=n;}
}
void multply(int n){
int N=;
while(N<n+n)N*=;
for(int i=;i<N;i++)a1[i]=a2[i]=;
for(int i=;i<n;i++)a1[i].real(b1[i]),a2[i].real(b2[i]);
fft::init(N);fft::dft(a1,N);fft::dft(a2,N);
for(int i=;i<N;i++)a1[i]*=a2[i];
fft::idft(a1,N);
}
int main(){
scanf("%d",&n);n++;
b1[]=b2[]=;
for(int i=;i<n;i++){
scanf("%lf",&b1[i]);
b2[i]=1.0/i/i;
}
multply(n);
for(int i=;i<n;i++)ans[i]=a1[i].real();
for(int i=;i<n/;i++)swap(b2[i],b2[n-i-]);
multply(n);
for(int i=;i<n;i++){
ans[i]-=a1[i+n-].real();
printf("%.3lf\n",ans[i]);
}
return ;
}
【BZOJ】3527: [Zjoi2014]力 FFT的更多相关文章
- bzoj 3527 [Zjoi2014]力——FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 把 q[ i ] 除掉.设 g[ i ] = i^2 ,有一半的式子就变成卷积了:另一 ...
- bzoj 3527 [Zjoi2014] 力 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 看了看TJ才推出来式子,还是不够熟练啊: TJ:https://blog.csdn.n ...
- BZOJ 3527: [Zjoi2014]力(FFT)
我们看一下这个函数,很容易就把他化为 E=sigma(aj/(i-j)/(i-j))(i>j)-sigma(aj/(i-j)/(i-j))(j>i) 把它拆成两半,可以发现分子与分母下标相 ...
- BZOJ 3527 [Zjoi2014]力 ——FFT
[题目分析] FFT,构造数列进行卷积,挺裸的一道题目诶. 还是写起来并不顺手,再练. [代码] #include <cmath> #include <cstdio> #inc ...
- ●BZOJ 3527 [Zjoi2014]力
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3527 题解: FFT求卷积. $$\begin{aligned}E_i&=\frac ...
- BZOJ 3527: [ZJOI2014]力(FFT)
BZOJ 3527: [ZJOI2014]力(FFT) 题意: 给出\(n\)个数\(q_i\),给出\(Fj\)的定义如下: \[F_j=\sum \limits _ {i < j} \fra ...
- 数学(FFT):BZOJ 3527 [Zjoi2014]力
题目在这里:http://wenku.baidu.com/link?url=X4j8NM14MMYo8Q7uPE7-7GjO2_TXnMFA2azEbBh4pDf7HCENM3-hPEl4mzoe2w ...
- bzoj 3527: [Zjoi2014]力 快速傅里叶变换 FFT
题目大意: 给出n个数\(q_i\)定义 \[f_i = \sum_{i<j}{\frac{q_iq_j}{(i-j)^2}} - \sum_{i>j}\frac{q_iq_j}{(i-j ...
- bzoj 3527: [Zjoi2014]力【FFT】
大力推公式,目标是转成卷积形式:\( C_i=\sum_{j=1}^{i}a_jb_{i-j} \) 首先下标从0开始存,n-- \[ F_i=\frac{\sum_{j<i}\frac{q_j ...
随机推荐
- View 渲染
在Spring MVC 中,controllers不负责具体的页面渲染,仅仅是调用业务逻辑并返回model数据给view层,至于view层具体怎么展现,由专门的view层具体负责,这就是MVC模式,业 ...
- 转 从红帽、GitHub和Docker看开源商业模式的进阶
从红帽.GitHub和Docker看开源商业模式的进阶 发表于2014-12-16 10:26| 7594次阅读| 来源http://stratechery.com/| 0 条评论| 作者Ben Th ...
- 使用 TestNG 并发测试 ;
使用TestNG对IE /Chrome/firefox 进行兼容性并发测试 : package testNGTest; import org.openqa.selenium.By; import or ...
- 转载免安装版mysql的配置
解压到自定义目录,我这里演示的是D:\wamp\mysql\ 复制根目录下的my-default.ini,改名为my.ini,my.ini用下面内容替换 #以下是复制内容,这行可不复制 [clie ...
- excel表中判断A列与B列内容是否相同,相同的话在C列按条件输出!
判断两列数据是否相同,有以下几个函数判断(做笔记于此,方便以后查找): 1.=IF(AND(A4=B4),"相同","") 在C列输出相同字符 2.=IF(A1 ...
- python的N个小功能之正则匹配
1.. 匹配任意除换行符“\n”外的字符:2.*表示匹配前一个字符0次或无限次:3.+或*后跟?表示非贪婪匹配,即尽可能少的匹配,如*?重复任意次,但尽可能少重复,惰性匹配:4. .*? 表示匹配任意 ...
- Strus默认跳转方式是请求转发 地址栏不变 与javaweb的内部转发一样
Strus默认跳转方式是请求转发 地址栏不变 与javaweb的内部转发一样
- 51nod-1227-平均最小公倍数
题意 定义 \(n\) 的平均最小公倍数: \[ A(n)=\frac{1}{n}\sum _{i=1}^n\text{lcm}(n,i) \] 求 \[ \sum _{i=L}^RA(i) \] \ ...
- bzoj1007-水平可见直线
题目 在平面直角坐标系上以\(y=kx+b\)的形式给出\(n (n\le 50000)\)条直线,求从无限高的地方能看到多少条直线. 分析 举几个例子发现我们要求的直线组成一个下凸的形状.所以我们只 ...
- 【Java】CSVUtils
package com.msk.ds.logic; import java.io.*; import java.util.List; /** * Created by Administrator on ...