Discrete Logging(POJ2417 + BSGS)
题目链接:http://poj.org/problem?id=2417
题目:



题意:
求一个最小的x满足a^x==b(mod p),p为质数。
思路:
BSGS板子题,推荐一篇好的BSGS和扩展BSGS的讲解博客:http://blog.miskcoo.com/2015/05/discrete-logarithm-problem
代码实现如下:
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <cmath>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; typedef long long LL;
typedef pair<LL, LL> pLL;
typedef pair<LL, int> pli;
typedef pair<int, LL> pil;;
typedef pair<int, int> pii;
typedef unsigned long long uLL; #define lson i<<1
#define rson i<<1|1
#define lowbit(x) x&(-x)
#define bug printf("*********\n");
#define debug(x) cout<<"["<<x<<"]" <<endl;
#define FIN freopen("D://code//in.txt", "r", stdin);
#define IO ios::sync_with_stdio(false),cin.tie(0); const double eps = 1e-;
const int mod = 1e9 + ;
const int maxn = 1e6 + ;
const double pi = acos(-);
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f; int a, b, p; struct Hashmap { //哈希表
static const int Ha=, maxe=;
int E,lnk[Ha], son[maxe+], nxt[maxe+], w[maxe+];
int top, stk[maxe+];
void clear() {
E=;
while(top) lnk[stk[top--]]=;
}
void Add(int x,int y) {
son[++E]=y;
nxt[E]=lnk[x];
w[E]=((<<) - ) * + ;
lnk[x]=E;
}
bool count(int y) {
int x=y % Ha;
for (int j = lnk[x]; j; j=nxt[j])
if (y == son[j]) return true;
return false;
}
int& operator [] (int y) {
int x=y % Ha;
for (int j = lnk[x]; j; j = nxt[j])
if (y == son[j]) return w[j];
Add(x,y);
stk[++top]=x;
return w[E];
}
}mp; int exgcd(int a, int b, int& x, int& y) {
if(b == ) {
x = , y = ;
return a;
}
int d = exgcd(b, a % b, x, y);
int t = x;
x = y;
y = t - a / b * y;
return d;
} int BSGS(int A, int B, int C) {
if(C == ) {
if(!B) return A != ;
else return -;
}
if(B == ) {
if(A) return ;
else return -;
}
if(A % C == ) {
if(!B) return ;
else return -;
}
int m = ceil(sqrt(C)); //分块
int D = , base = ;
mp.clear();
for(int i = ; i <= m - ; i++) {
if(mp[base] == ) mp[base] = i;
else mp[base] = min(mp[base], i);
base = ((LL)base * A) % C;
}
for(int i = ; i <= m - ; i++) {
int x, y, d = exgcd(D, C, x, y);
x = ((LL)x * B % C + C) % C;
if(mp.count(x)) return i * m + mp[x];
D = ((LL)D * base) % C;
}
return -;
} int main() {
//FIN;
while(~scanf("%d%d%d", &p, &a, &b)) {
int ans = BSGS(a, b, p);
if(ans == -) printf("no solution\n");
else printf("%d\n", ans);
}
return ;
}
Discrete Logging(POJ2417 + BSGS)的更多相关文章
- POJ2417 Discrete Logging【BSGS】
Discrete Logging Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5577 Accepted: 2494 ...
- Discrete Logging(poj2417)
Discrete Logging Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5120 Accepted: 2319 ...
- POJ2417 Discrete Logging【BSGS】(模板题)
<题目链接> 题目大意: P是素数,然后分别给你P,B,N三个数,然你求出满足这个式子的L的最小值 : BL== N (mod P). 解题分析: 这题是bsgs算法的模板题. #incl ...
- BZOJ 3239 Discrete Logging(BSGS)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3239 [题目大意] 计算满足 Y^x ≡ Z ( mod P) 的最小非负整数 [题解 ...
- 【BSGS】BZOJ3239 Discrete Logging
3239: Discrete Logging Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 729 Solved: 485[Submit][Statu ...
- BSGS算法+逆元 POJ 2417 Discrete Logging
POJ 2417 Discrete Logging Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 4860 Accept ...
- 【BZOJ3239】Discrete Logging BSGS
[BZOJ3239]Discrete Logging Description Given a prime P, 2 <= P < 231, an integer B, 2 <= B ...
- BSGS 扩展大步小步法解决离散对数问题 (BZOJ 3239: Discrete Logging// 2480: Spoj3105 Mod)
我先转为敬? orz% miskcoo 贴板子 BZOJ 3239: Discrete Logging//2480: Spoj3105 Mod(两道题输入不同,我这里只贴了3239的代码) CODE ...
- [POJ2417]Discrete Logging(指数级同余方程)
Discrete Logging Given a prime P, 2 <= P < 2 31, an integer B, 2 <= B < P, and an intege ...
随机推荐
- 敏捷冲刺DAY8
一. 每日会议 1. 照片 2. 昨日完成工作 第一次阶段测试. 3. 今日完成工作 对前七次敏捷冲刺的工作进行完善. 4. 工作中遇到的困难 浏览器兼容性问题.页面响应性能问题.内存溢出问题-- 二 ...
- Hadoop环境搭建(三)
长久没用了,再次登陆Ubuntu的时候提醒密码错误,然后就进入了guest session,依然可以进入系统进行工作但身份是guest,于是开始了找回密码的漫漫长路. 首先,在guest模式下,右上角 ...
- 微信小程序组件 360
data: { nums: 1, start: '', // change:'' // 上一部记忆数据 mid: '' }, mytouchmove: function (e) { var start ...
- 在MFC中显示cmd命令行
添加函数 void InitConsoleWindow1() { ; FILE* fp; AllocConsole(); nCrt = _open_osfhandle((long)GetStdHand ...
- Delphi 组件渐进开发浅谈(一)——由简入繁
最近业余时间在写游戏修改器玩,对于Delphi自带的组件总觉得差强人意,需要书写大量冗余代码,如果大量使用第三方组件,在以后的移植和与他人交互时也不是很方便,因此便产生了自己封装组件的想法. 实际上这 ...
- 第95天:CSS3 边框、背景和文字效果
1.CSS3边框: border-radius:CSS3圆角边框.在 CSS2 中添加圆角矩形需要技巧,我们必须为每个圆角使用不同的图片,在 CSS3 中,创建圆角是非常容易的,在 CSS3 中,bo ...
- wp开发(一)--应用发布篇
本文非常简单,适合刚刚刚刚入门的菜鸟,且针对的是wp8版本.wp8应用的发布总体来说没什么难度,只是有几个值得注意的地方,希望本文可以减少菜鸟们不必要的担心. 首先假设项目已经完成,且要发布到应用商城 ...
- Contest 4
A:cf原题.当然是不是也没什么关系. #include<iostream> #include<cstdio> #include<cstdlib> #include ...
- 线段树之Sum
题面: 给定一数列,规定有两种操作,一是修改某个元素,二是求区间的连续和. Input: 输入数据第一行包含两个正整数n,m(n<=100000,m<=500000),以下是m行, 每行有 ...
- Spring Batch @SpringBatchTest 注解
Spring Batch 提供了一些非常有用的工具类(例如 JobLauncherTestUtils 和 JobRepositoryTestUtils)和测试执行监听器(StepScopeTestEx ...