【动态规划/多重背包问题】POJ1014-Dividing
多重背包问题的优化版来做,详见之前的动态规划读书笔记。
dp[i][j]表示前i中数加得到j时第i种数最多剩余几个(不能加和得到i的情况下为-1)递推式为:
dp[i][j]=mi(dp[i-1][j]≥0,即前i-1种数就能达到数字j)
=-1(j<ai 或者 dp[i][j-ai]≤0,即再加上一个第i种数也无法达到j 或者 当前和小于当前数)
=dp[i][j-ai]-1(可以达到的情况)
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std; int a[];
int dp[+]; int main()
{
int kase=;
while (scanf("%d",&a[]))
{
kase++;
int sum=a[];
for (int i=;i<=;i++)
{
scanf("%d",&a[i]);
sum+=a[i]*i;
}
if (sum==) break; bool f=false;
if (sum%==)
{
sum=sum/;
for (int i=;i<=sum;i++) dp[i]=-;
dp[]=;
for (int i=;i<=;i++)
for (int j=;j<=sum;j++)
{
if (dp[j]>=) dp[j]=a[i];
else
{
if (j<i || dp[j-i]<=) dp[j]=-;
else dp[j]=dp[j-i]-;
}
}
if (dp[sum]>=) f=true;
}
cout<<"Collection #"<<kase<<':'<<endl;
if (f) cout<<"Can be divided."<<endl;
else cout<<"Can't be divided."<<endl;
cout<<endl;
}
}
【动态规划/多重背包问题】POJ1014-Dividing的更多相关文章
- 【动态规划/多重背包问题】POJ2392-Space Elevator
方法同POJ1014-Dividing,唯一不同点在于每一种block有最大限定高度a,故要以a为关键字进行排序,使得最大高度小的在前,否则最大高度小的再后可能放不上去. #include<io ...
- 【DP|多重背包可行性】POJ-1014 Dividing
Dividing Time Limit: 1000MS Memory Limit: 10000K Description Marsha and Bill own a collection of mar ...
- 51nod 多重背包问题(动态规划)
多重背包问题 一个背包,承量有限为W,有n种物体,第i种物体,价值Vi,占用重量为 Wi,且有Ci件,选择物品若干放入背包,使得总重量不超过背包的承重.总价值最大? 输入 第1行,2个整数,N和W中间 ...
- HDU 2844 Coins (多重背包问题DP)
题意:给定n种硬币,每种价值是a,数量是c,让你求不大于给定V的不同的价值数,就是说让你用这些硬币来组成多少种不同的价格,并且价格不大于V. 析:一看就应该知道是一个动态规划的背包问题,只不过是变形, ...
- 多重背包问题:悼念512汶川大地震遇难同胞——珍惜现在,感恩生活(HDU 2191)(二进制优化)
悼念512汶川大地震遇难同胞——珍惜现在,感恩生活 HDU 2191 一道裸的多重背包问题: #include<iostream> #include<algorithm> #i ...
- poj 1742 Coins (动态规划,背包问题)
Coins Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 32977 Accepted: 11208 Descripti ...
- O(V*n)的多重背包问题
多重背包问题: 有n件物品,第i件价值为wi,质量为vi,有c1件,问,给定容量V,求获得的最大价值. 朴素做法: 视为0,1,2,...,k种物品的分组背包 [每组只能选一个] f[i][j]=Ma ...
- 多重背包问题II
多重背包问题II 总体积是m,每个小物品的体积是A[i] ,每个小物品的数量是B[i],每个小物品的价值是C[i] 求能够放入背包内的最大物品能够获得的最大价值 和上一个很类似 上一题体积就是价值,这 ...
- 九度OJ 1455 珍惜现在,感恩生活 -- 动态规划(背包问题)
题目地址:http://ac.jobdu.com/problem.php?pid=1455 题目描述: 为了挽救灾区同胞的生命,心系灾区同胞的你准备自己采购一些粮食支援灾区,现在假设你一共有资金n元, ...
随机推荐
- python常用库之base64
1. 什么是base64 base64是一种将不可见字符转换为可见字符的编码方式. 2. 如何使用 最简单的使用方式 import base64 if __name__ == '__main__': ...
- [LeetCode] Intersection of Two Linked Lists 两链表是否相交
Write a program to find the node at which the intersection of two singly linked lists begins. For ex ...
- Mysql储存过程1: 设置结束符与储存过程创建
#显示储存过程 show procedure status; #设置结束符 delimiter $; #创建储存过程 create procedure procedure_name() begin - ...
- 大端小端转换,le32_to_cpu 和cpu_to_le32
字节序 http://oss.org.cn/kernel-book/ldd3/ch11s04.html 小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台 ...
- BZOJ 3958 Mummy Madness
Problem BZOJ Solution 算法:二分+扫描线 快要2019年了,就瞎写一篇博客来凑数,不然感觉太荒凉了-- 答案是可二分的,那么二分的依据是什么呢?不妨设当前二分的答案为\(mid\ ...
- OAuth认证与授权
什么是OAuth授权? 一.什么是OAuth协议 OAuth(开放授权)是一个开放标准. 允许第三方网站在用户授权的前提下访问在用户在服务商那里存储的各种信息. 而这种授权无需将用户提供用户名和密 ...
- Python多态、鸭子类型
一.多态 多态指的是一类事物有多种形态. 动物有多种形态:人,狗,猪 import abc class Animal(metaclass=abc.ABCMeta): #同一类事物:动物 @abc.ab ...
- HTTP协议头注射漏洞实例
HTTP 响应头文件中包含未经验证的数据会引发 cache-poisoning.cross-site scripting.cross-user defacement.page hijacking.co ...
- GUC-5 CountDownLatch闭锁
/* * CountDownLatch :闭锁,在完成某些运算是,只有其他所有线程的运算全部完成,当前运算才继续执行 */ public class TestCountDownLatch { publ ...
- shell-命令行参数(转)
命令行参数 (转自http://c.biancheng.net/cpp/view/2739.html) 特殊变量列表 变量 含义 $0 当前脚本的文件名 $n 传递给脚本或函数的参数.n 是一个数字, ...