https://leetcode.com/problems/cherry-pickup/description/

In a N x N grid representing a field of cherries, each cell is one of three possible integers.

  • 0 means the cell is empty, so you can pass through;
  • 1 means the cell contains a cherry, that you can pick up and pass through;
  • -1 means the cell contains a thorn that blocks your way.

Your task is to collect maximum number of cherries possible by following the rules below:

  • Starting at the position (0, 0) and reaching (N-1, N-1) by moving right or down through valid path cells (cells with value 0 or 1);
  • After reaching (N-1, N-1), returning to (0, 0) by moving left or up through valid path cells;
  • When passing through a path cell containing a cherry, you pick it up and the cell becomes an empty cell (0);
  • If there is no valid path between (0, 0) and (N-1, N-1), then no cherries can be collected.

Example 1:

Input: grid =
[[0, 1, -1],
[1, 0, -1],
[1, 1, 1]]
Output: 5
Explanation:
The player started at (0, 0) and went down, down, right right to reach (2, 2).
4 cherries were picked up during this single trip, and the matrix becomes [[0,1,-1],[0,0,-1],[0,0,0]].
Then, the player went left, up, up, left to return home, picking up one more cherry.
The total number of cherries picked up is 5, and this is the maximum possible.

Note:

  • grid is an N by N 2D array, with 1 <= N <= 50.
  • Each grid[i][j] is an integer in the set {-1, 0, 1}.
  • It is guaranteed that grid[0][0] and grid[N-1][N-1] are not -1.

思路

解答给出的第一种方法时贪心,但是并不是正确答案,正确解法还是万能的dp。

在 t 个steps后,我们到的位置 (r, c),有 r+c=t 。如果有两个人在位置在 t 个steps后在位置 positions (r1, c1) and (r2, c2) 上,那么有 r2 = r1 + c1 - c2。 这意味着变量r1, c1, c2唯一决定了两个都走了r1 + c1 number of steps人的位置。这是我们动态规划思想的基础。

自顶向下的dp:

Let dp[r1][c1][c2] be the most number of cherries obtained by two people starting at (r1, c1) and (r2, c2)and walking towards (N-1, N-1) picking up cherries, where r2 = r1+c1-c2.

If grid[r1][c1] and grid[r2][c2] are not thorns, then the value of dp[r1][c1][c2] is (grid[r1][c1] + grid[r2][c2]), plus the maximum of dp[r1+1][c1][c2]dp[r1][c1+1][c2]dp[r1+1][c1][c2+1]dp[r1][c1+1][c2+1] as appropriate. We should also be careful to not double count in case (r1, c1) == (r2, c2).

Why did we say it was the maximum of dp[r+1][c1][c2] etc.? It corresponds to the 4 possibilities for person 1 and 2 moving down and right:

  • Person 1 down and person 2 down: dp[r1+1][c1][c2];
  • Person 1 right and person 2 down: dp[r1][c1+1][c2];
  • Person 1 down and person 2 right: dp[r1+1][c1][c2+1];
  • Person 1 right and person 2 right: dp[r1][c1+1][c2+1];

要点:1. 将题目中要求的从起始到末尾在返回起始点,等价为二个人同时从起点出发去重点。

      2. 一个三维的dp数组,标记了两个人的位置,以及当前最优解

   3. 子问题之间的关系,要避免重复计算。

代码

class Solution {
int[][][] memo;
int[][] grid;
int N;
public int cherryPickup(int[][] grid) {
this.grid = grid;
N = grid.length;
memo = new int[N][N][N];
for (int[][] layer: memo)
for (int[] row: layer)
Arrays.fill(row, Integer.MIN_VALUE);
return Math.max(0, dp(0, 0, 0));
}
public int dp(int r1, int c1, int c2) {
int r2 = r1 + c1 - c2;
if (N == r1 || N == r2 || N == c1 || N == c2 ||
grid[r1][c1] == -1 || grid[r2][c2] == -1) { //到达边界或者遇到阻碍
return -999999;
} else if (r1 == N-1 && c1 == N-1) {
return grid[r1][c1];
} else if (memo[r1][c1][c2] != Integer.MIN_VALUE) { // 如果这个位置计算过了则不需要再次计算
return memo[r1][c1][c2];
} else {
int ans = grid[r1][c1];
if (c1 != c2) ans += grid[r2][c2];
ans += Math.max(Math.max(dp(r1, c1+1, c2+1), dp(r1+1, c1, c2+1)),
Math.max(dp(r1, c1+1, c2), dp(r1+1, c1, c2)));
memo[r1][c1][c2] = ans;
return ans;
}
}
}

上面是自顶向下的dp。另一中是自低向上的dp:

At time t, let dp[c1][c2] be the most cherries that we can pick up for two people going from (0, 0) to (r1, c1)and (0, 0) to (r2, c2), where r1 = t-c1, r2 = t-c2. Our dynamic program proceeds similarly to Approach 

class Solution {
public int cherryPickup(int[][] grid) {
int N = grid.length;
int[][] dp = new int[N][N];
for (int[] row: dp) Arrays.fill(row, Integer.MIN_VALUE);
dp[0][0] = grid[0][0]; for (int t = 1; t <= 2*N - 2; ++t) {
int[][] dp2 = new int[N][N];
for (int[] row: dp2) Arrays.fill(row, Integer.MIN_VALUE); for (int i = Math.max(0, t-(N-1)); i <= Math.min(N-1, t); ++i) {
for (int j = Math.max(0, t-(N-1)); j <= Math.min(N-1, t); ++j) {
if (grid[i][t-i] == -1 || grid[j][t-j] == -1) continue;
int val = grid[i][t-i];
if (i != j) val += grid[j][t-j];
for (int pi = i-1; pi <= i; ++pi)
for (int pj = j-1; pj <= j; ++pj)
if (pi >= 0 && pj >= 0)
dp2[i][j] = Math.max(dp2[i][j], dp[pi][pj] + val);
}
}
dp = dp2;
}
return Math.max(0, dp[N-1][N-1]);
}
}

LeetCode741. Cherry Pickup的更多相关文章

  1. [Swift]LeetCode741. 摘樱桃 | Cherry Pickup

    In a N x N grid representing a field of cherries, each cell is one of three possible integers. 0 mea ...

  2. [LeetCode] 741. Cherry Pickup 捡樱桃

    In a N x N grid representing a field of cherries, each cell is one of three possible integers. 0 mea ...

  3. [LeetCode] Cherry Pickup 捡樱桃

    In a N x N grid representing a field of cherries, each cell is one of three possible integers. 0 mea ...

  4. 741. Cherry Pickup

    In a N x N grid representing a field of cherries, each cell is one of three possible integers. 0 mea ...

  5. LeetCode 741. Cherry Pickup

    原题链接在这里:https://leetcode.com/problems/cherry-pickup/ 题目: In a N x N grid representing a field of che ...

  6. 动态规划-Cherry Pickup

    2020-02-03 17:46:04 问题描述: 问题求解: 非常好的题目,和two thumb其实非常类似,但是还是有个一点区别,就是本题要求最后要到达(n - 1, n - 1),只有到达了(n ...

  7. [LeetCode] Dungeon Game 地牢游戏

    The demons had captured the princess (P) and imprisoned her in the bottom-right corner of a dungeon. ...

  8. [LeetCode] Minimum Path Sum 最小路径和

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  9. Swift LeetCode 目录 | Catalog

    请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift    说明:题目中含有$符号则为付费题目. 如 ...

随机推荐

  1. 洛谷 P4503 [CTSC2014]企鹅QQ 解题报告

    P4503 [CTSC2014]企鹅QQ 题目背景 PenguinQQ是中国最大.最具影响力的SNS(Social Networking Services)网站,以实名制为基础,为用户提供日志.群.即 ...

  2. Java试题二

    QUESTION 37Given:1. class Super {2. private int a;3. protected Super(int a) { this.a = a; }4. } ...1 ...

  3. 51nod 1766 树上的最远点对(线段树)

    像树的直径一样,两个集合的最长路也是由两个集合内部的最长路的两个端点组成的,于是我们知道了两个集合的最长路,枚举一下两两端点算出答案就可以合并了,所以就可以用线段树维护一个区间里的最长路了. #inc ...

  4. 【分块,莫队】【P4396】【AHOI2013】作业

    传送门 Description 此时己是凌晨两点,刚刚做了Codeforces的小A掏出了英语试卷.英语作业其实不算多,一个小时刚好可以做完.然后是一个小时可以做完的数学作业,接下来是分别都是一个小时 ...

  5. mac调教指南

    最近入手了一个mac,  在此记录下调教的过程. http://note.youdao.com/noteshare?id=5d1eedffab5cb47d4f53970c2ec937aa

  6. python练习1--用户登入

    python版本为python3.51.要求 1)输入用户名密码 2)认证成功后显示欢迎信息 3)输错三次后锁定 2.需求分析 1)用户信息存储在文件中(login/config/user_login ...

  7. u3d摄像机截图

    using System; using UnityEngine; using System.Collections; public class TestCamreaCapture1 : MonoBeh ...

  8. CF540 C BFS 水

    '.'->'X' 前者走后变成后者,后者除了是终点不能再走.初始位置是X很傻的以为这样从初始点走出去后初始位置就变成不能走了,实际上是还能走一次的. 其他就是BFS,路上记得把路变成X就好了 太 ...

  9. 2015/9/21 Python基础(17):绑定和方法调用

    绑定和方法调用现在我们需要再次阐述Python中绑定(binding)的概念,它主要与方法调用相关联.方法是类内部定义的函数,这意味着方法是类属性而不是实例属性.其次,方法只有在其所属的类拥有实例时, ...

  10. Centos 7 下搭建 Dokuwiki

    Centos 7 下搭建 Dokuwiki # Dokuwiki 是php的,所以要先搭建php环境,下载 apache和php,第1.2步下载完,相关的依赖都会下载## 1.下载 httpdyum ...