LeetCode741. Cherry Pickup
https://leetcode.com/problems/cherry-pickup/description/
In a N x N grid representing a field of cherries, each cell is one of three possible integers.
- 0 means the cell is empty, so you can pass through;
- 1 means the cell contains a cherry, that you can pick up and pass through;
- -1 means the cell contains a thorn that blocks your way.
Your task is to collect maximum number of cherries possible by following the rules below:
- Starting at the position (0, 0) and reaching (N-1, N-1) by moving right or down through valid path cells (cells with value 0 or 1);
- After reaching (N-1, N-1), returning to (0, 0) by moving left or up through valid path cells;
- When passing through a path cell containing a cherry, you pick it up and the cell becomes an empty cell (0);
- If there is no valid path between (0, 0) and (N-1, N-1), then no cherries can be collected.
Example 1:
Input: grid =
[[0, 1, -1],
[1, 0, -1],
[1, 1, 1]]
Output: 5
Explanation:
The player started at (0, 0) and went down, down, right right to reach (2, 2).
4 cherries were picked up during this single trip, and the matrix becomes [[0,1,-1],[0,0,-1],[0,0,0]].
Then, the player went left, up, up, left to return home, picking up one more cherry.
The total number of cherries picked up is 5, and this is the maximum possible.
Note:
gridis anNbyN2D array, with1 <= N <= 50.- Each
grid[i][j]is an integer in the set{-1, 0, 1}. - It is guaranteed that grid[0][0] and grid[N-1][N-1] are not -1.
思路
解答给出的第一种方法时贪心,但是并不是正确答案,正确解法还是万能的dp。
在 t 个steps后,我们到的位置 (r, c),有 r+c=t 。如果有两个人在位置在 t 个steps后在位置 positions (r1, c1) and (r2, c2) 上,那么有 r2 = r1 + c1 - c2。 这意味着变量r1, c1, c2唯一决定了两个都走了r1 + c1 number of steps人的位置。这是我们动态规划思想的基础。
自顶向下的dp:
Let dp[r1][c1][c2] be the most number of cherries obtained by two people starting at (r1, c1) and (r2, c2)and walking towards (N-1, N-1) picking up cherries, where r2 = r1+c1-c2.
If grid[r1][c1] and grid[r2][c2] are not thorns, then the value of dp[r1][c1][c2] is (grid[r1][c1] + grid[r2][c2]), plus the maximum of dp[r1+1][c1][c2], dp[r1][c1+1][c2], dp[r1+1][c1][c2+1], dp[r1][c1+1][c2+1] as appropriate. We should also be careful to not double count in case (r1, c1) == (r2, c2).
Why did we say it was the maximum of dp[r+1][c1][c2] etc.? It corresponds to the 4 possibilities for person 1 and 2 moving down and right:
- Person 1 down and person 2 down:
dp[r1+1][c1][c2]; - Person 1 right and person 2 down:
dp[r1][c1+1][c2]; - Person 1 down and person 2 right:
dp[r1+1][c1][c2+1]; - Person 1 right and person 2 right:
dp[r1][c1+1][c2+1];
要点:1. 将题目中要求的从起始到末尾在返回起始点,等价为二个人同时从起点出发去重点。
2. 一个三维的dp数组,标记了两个人的位置,以及当前最优解
3. 子问题之间的关系,要避免重复计算。
代码
class Solution {
int[][][] memo;
int[][] grid;
int N;
public int cherryPickup(int[][] grid) {
this.grid = grid;
N = grid.length;
memo = new int[N][N][N];
for (int[][] layer: memo)
for (int[] row: layer)
Arrays.fill(row, Integer.MIN_VALUE);
return Math.max(0, dp(0, 0, 0));
}
public int dp(int r1, int c1, int c2) {
int r2 = r1 + c1 - c2;
if (N == r1 || N == r2 || N == c1 || N == c2 ||
grid[r1][c1] == -1 || grid[r2][c2] == -1) { //到达边界或者遇到阻碍
return -999999;
} else if (r1 == N-1 && c1 == N-1) {
return grid[r1][c1];
} else if (memo[r1][c1][c2] != Integer.MIN_VALUE) { // 如果这个位置计算过了则不需要再次计算
return memo[r1][c1][c2];
} else {
int ans = grid[r1][c1];
if (c1 != c2) ans += grid[r2][c2];
ans += Math.max(Math.max(dp(r1, c1+1, c2+1), dp(r1+1, c1, c2+1)),
Math.max(dp(r1, c1+1, c2), dp(r1+1, c1, c2)));
memo[r1][c1][c2] = ans;
return ans;
}
}
}
上面是自顶向下的dp。另一中是自低向上的dp:
At time t, let dp[c1][c2] be the most cherries that we can pick up for two people going from (0, 0) to (r1, c1)and (0, 0) to (r2, c2), where r1 = t-c1, r2 = t-c2. Our dynamic program proceeds similarly to Approach
class Solution {
public int cherryPickup(int[][] grid) {
int N = grid.length;
int[][] dp = new int[N][N];
for (int[] row: dp) Arrays.fill(row, Integer.MIN_VALUE);
dp[0][0] = grid[0][0];
for (int t = 1; t <= 2*N - 2; ++t) {
int[][] dp2 = new int[N][N];
for (int[] row: dp2) Arrays.fill(row, Integer.MIN_VALUE);
for (int i = Math.max(0, t-(N-1)); i <= Math.min(N-1, t); ++i) {
for (int j = Math.max(0, t-(N-1)); j <= Math.min(N-1, t); ++j) {
if (grid[i][t-i] == -1 || grid[j][t-j] == -1) continue;
int val = grid[i][t-i];
if (i != j) val += grid[j][t-j];
for (int pi = i-1; pi <= i; ++pi)
for (int pj = j-1; pj <= j; ++pj)
if (pi >= 0 && pj >= 0)
dp2[i][j] = Math.max(dp2[i][j], dp[pi][pj] + val);
}
}
dp = dp2;
}
return Math.max(0, dp[N-1][N-1]);
}
}
LeetCode741. Cherry Pickup的更多相关文章
- [Swift]LeetCode741. 摘樱桃 | Cherry Pickup
In a N x N grid representing a field of cherries, each cell is one of three possible integers. 0 mea ...
- [LeetCode] 741. Cherry Pickup 捡樱桃
In a N x N grid representing a field of cherries, each cell is one of three possible integers. 0 mea ...
- [LeetCode] Cherry Pickup 捡樱桃
In a N x N grid representing a field of cherries, each cell is one of three possible integers. 0 mea ...
- 741. Cherry Pickup
In a N x N grid representing a field of cherries, each cell is one of three possible integers. 0 mea ...
- LeetCode 741. Cherry Pickup
原题链接在这里:https://leetcode.com/problems/cherry-pickup/ 题目: In a N x N grid representing a field of che ...
- 动态规划-Cherry Pickup
2020-02-03 17:46:04 问题描述: 问题求解: 非常好的题目,和two thumb其实非常类似,但是还是有个一点区别,就是本题要求最后要到达(n - 1, n - 1),只有到达了(n ...
- [LeetCode] Dungeon Game 地牢游戏
The demons had captured the princess (P) and imprisoned her in the bottom-right corner of a dungeon. ...
- [LeetCode] Minimum Path Sum 最小路径和
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...
- Swift LeetCode 目录 | Catalog
请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift 说明:题目中含有$符号则为付费题目. 如 ...
随机推荐
- LINUX内核分析第四周——扒开系统调用的三层皮
LINUX内核分析第四周--扒开系统调用的三层皮 李雪琦 + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course ...
- BNU-2017.7.5排位赛3总结
链接:https://www.bnuoj.com/v3/contest_show.php?cid=9148#info A题 满足条件的只有(1,2,4),(1,2,6),(1,3,6),所以先满足4, ...
- mybatis基础犯错总结
1.关于mybatis的文件一般都是其mapper文件出错: 首先关于输入参数parameterType出错: (1)基本数据类型:如果输入参数只有一个,其数据类型可以是基本数据类型,也可以是自己定的 ...
- 手脱ACProtect v1.35(无Stolen Code)之二
首先,想说明的是这个壳在我的PC上是可以用上一个帖子中的方法来到假的OEP的:http://www.52pojie.cn/forum.php?mod=viewthread&tid=433462 ...
- C/C++ Volatile关键词深度剖析
文章来源:http://hedengcheng.com/?p=725 背景 此微博,引发了朋友们的大量讨论:赞同者有之:批评者有之:当然,更多的朋友,是希望我能更详细的解读C/C++ Volatile ...
- REST式的web服务
“REST”是罗伊·菲尔丁(Roy Fielding)在他的博士论文中创造的缩写.菲尔丁论文的第5章勾画出了被称为REST风格或REST式的Web服务的知道原则.他是HTTP1.1规范的主要作者和Ap ...
- JS-this的用法
o.onclick=function(){alert(this)}//这个this是指o ------ var arr=[1,2,3,4,5]; arr.a=12; arr.show=function ...
- CodeForces 990B
You have a Petri dish with bacteria and you are preparing to dive into the harsh micro-world. But, u ...
- 从INT_MAX和INT_MIN看补码
刷一道题的时候遇到INT_MAX和INT_MIN的问题,有些东西忘了,梳理一下. INT_MAX为2147483647,INT_MIN为-2147483648,为什么MIN的绝对值比MAX多1呢,因为 ...
- flex实例(阮一峰)
Flex 布局教程:实例篇 作者: 阮一峰 日期: 2015年7月14日 上一篇文章介绍了Flex布局的语法,今天介绍常见布局的Flex写法. 你会看到,不管是什么布局,Flex往往都可以几行命令 ...