题意

Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away and join the circus. Their hoofed feet prevent them from tightrope walking

and swinging from the trapeze (and their last attempt at firing a cow out of a cannon met with a dismal failure). Thus, they have decided to practice performing

acrobatic stunts.

The cows aren't terribly creative and have only come up with one acrobatic stunt: standing on top of each other to form a vertical stack of some height. The

cows are trying to figure out the order in which they should arrange themselves ithin this stack.

Each of the N cows has an associated weight (1 <= W_i <= 10,000) and strength (1 <= S_i <= 1,000,000,000). The risk of a cow collapsing is equal to the

combined weight of all cows on top of her (not including her own weight, of course) minus her strength (so that a stronger cow has a lower risk). Your task is to

determine an ordering of the cows that minimizes the greatest risk of collapse for any of the cows.

分析

考虑相邻的两头牛i和i+1,初始时他们的难受值是

\[\sum_{j=i+1}^n W_j-S_i \quad \sum_{j=i+2}^nW_j-S_{i+1}
\]

交换后的难受值是

\[\sum_{j=i+1}^nW_j+W_i-S_{i+1} \quad \sum_{j=i+2}^n W_j -S_i
\]

观察式子,发现需要比较的是

\[W_{i+1}-S_i \quad W_i-S_{i+1}
\]

设前者小于后者,则

\[W_i+S_i>W_{i+1}+S_{i+1}
\]

所以W和S的和大的牛排在下面更优。

时间复杂度\(O(N \log N)\)

代码

#include<iostream>
#include<algorithm>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;
rg char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') w=-1;
ch=getchar();
}
while(isdigit(ch))
data=data*10+ch-'0',ch=getchar();
return data*w;
}
template<class T>il T read(rg T&x){
return x=read<T>();
}
typedef long long ll; co int N=5e4+1;
int w[N],s[N],id[N];
bool cmp(int x,int y){
return w[x]+s[x]<w[y]+s[y];
}
int main(){
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
int n=read<int>();
for(int i=1;i<=n;++i)
read(w[i]),read(s[i]),id[i]=i;
std::sort(id+1,id+n+1,cmp);
int ans=0,sum=0;
for(int i=1;i<=n;++i)
ans=std::max(ans,sum-s[id[i]]),sum+=w[id[i]];
printf("%d\n",ans);
return 0;
}

POJ3045 Cow Acrobats的更多相关文章

  1. poj3045 Cow Acrobats (思维,贪心)

    题目: poj3045 Cow Acrobats 解析: 贪心题,类似于国王游戏 考虑两个相邻的牛\(i\),\(j\) 设他们上面的牛的重量一共为\(sum\) 把\(i\)放在上面,危险值分别为\ ...

  2. POJ3045 Cow Acrobats 2017-05-11 18:06 31人阅读 评论(0) 收藏

    Cow Acrobats Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4998   Accepted: 1892 Desc ...

  3. POJ3045 Cow Acrobats —— 思维证明

    题目链接:http://poj.org/problem?id=3045 Cow Acrobats Time Limit: 1000MS   Memory Limit: 65536K Total Sub ...

  4. POJ-3045 Cow Acrobats (C++ 贪心)

    Description Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away a ...

  5. poj3045 Cow Acrobats(二分最大化最小值)

    https://vjudge.net/problem/POJ-3045 读题后提取到一点:例如对最底层的牛来说,它的崩溃风险=所有牛的重量-(底层牛的w+s),则w+s越大,越在底层. 注意范围lb= ...

  6. [USACO2005][POJ3045]Cow Acrobats(贪心)

    题目:http://poj.org/problem?id=3045 题意:每个牛都有一个wi和si,试将他们排序,每头牛的风险值等于前面所有牛的wj(j<i)之和-si,求风险值最大的牛的最小风 ...

  7. 【POJ - 3045】Cow Acrobats (贪心)

    Cow Acrobats Descriptions 农夫的N只牛(1<=n<=50,000)决定练习特技表演. 特技表演如下:站在对方的头顶上,形成一个垂直的高度. 每头牛都有重量(1 & ...

  8. BZOJ1629: [Usaco2007 Demo]Cow Acrobats

    1629: [Usaco2007 Demo]Cow Acrobats Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 601  Solved: 305[Su ...

  9. POJ 3045 Cow Acrobats (贪心)

    POJ 3045 Cow Acrobats 这是个贪心的题目,和网上的很多题解略有不同,我的贪心是从最下层开始,每次找到能使该层的牛的风险最小的方案, 记录风险值,上移一层,继续贪心. 最后从遍历每一 ...

随机推荐

  1. linux下如何安装lua

    1.下载lua包并解压 wget -c http://www.lua.org/ftp/lua-5.3.0.tar.gz  tar zxvf lua-5.3.0.tar.gz 2.下载libreadli ...

  2. SPOJ-CLEANRBT-状压dp

    CLEANRBT - Cleaning Robot #dynamic-programming #bfs Here, we want to solve path planning for a mobil ...

  3. 几款必备LINUX的命令行神器

    Dstat & sar iostat, vmstat, ifstat 三合一的工具,用来查看系统性能(我在<性能调优攻略>中提到过那三个xxstat工具). 官方网站:http:/ ...

  4. Neutron之OVS

    OVS即开放虚拟交换标准,不仅仅是为了支持OpenFlow协议,而是为了给虚拟化平台上运行的虚拟机实例提供一套纯软件实现的路由交换协议栈.具体点说,Open vSwitch是在开源的Apache2.0 ...

  5. 【hive】lateral view的使用

    当使用UDTF函数的时候,hive只允许对拆分字段进行访问的 例如: select id,explode(arry1) from table; —错误 会报错FAILED: SemanticExcep ...

  6. 利用 LINQ的skip和Take 方法对List实现分页效果

    var testList=new List<string>(); )).Take(pageSize); //skip是跳过的条数,pageSize*(pageIndex-),Take 是返 ...

  7. 【zznu-夏季队内积分赛3-I】逛超市

    题目描述 “别人总说我瓜,其实我一点也不瓜,大多数时候我都机智的一批“我宝儿姐背包学的太差了,你们谁能帮我解决这道题,我就让他做我的男朋友!宝儿姐现在在逛超市,超市里的种类实在是太多了,每种都有很多很 ...

  8. VS2015常用快捷键总结(转)

    生成解决方案 F6,生成项目Shift+F6 调试执行F5,终止调试执行Shift+F5 执行调试Ctrl+F5 查找下一个F3,查找上一个Shift+F3 附加到进程Ctrl+Alt+P,逐过程F1 ...

  9. ZOJ 3696 Alien's Organ(泊松定理,期望值)

    Alien's Organ Time Limit: 2 Seconds      Memory Limit: 65536 KB There's an alien whose name is Marja ...

  10. RabbitMQ(6) 集群部署

    单节点部署 rabbitmq单节点部署比较简单,可以使用apt-get等工具快速安装部署. wget -O- https://www.rabbitmq.com/rabbitmq-release-sig ...