$LCT+枚举$ 复习一下$LCT$模板。

先以$Ai$为关键字$sort$,然后$Ai$从小到大枚举每条边,看能否构成环,构不成则加边,构成则判断,判断过了就切断$Bi$最大的边。

我的边是编号为$i+n$的点,忘了这点调了好久$QAQ$ $sosad$

#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 150003
#define read(x) x=getint()
using namespace std;
inline int getint() {int k = 0, fh = 1; char c = getchar(); for(; c < '0' || c > '9'; c = getchar()) if (c == '-') fh = -1; for(; c >= '0' && c <= '9'; c = getchar()) k = k * 10 + c - '0'; return k * fh;}
struct nodeE {int a, b, x, y;} E[N];
struct node *null;
struct node {
node *ch[2], *fa;
int d, pos;
short rev;
bool pl() {return fa->ch[1] == this;}
bool check() {return fa == null || (fa->ch[0] != this && fa->ch[1] != this);}
void push() {if (rev) {rev = 0; swap(ch[0], ch[1]); ch[0]->rev ^= 1; ch[1]->rev ^= 1;}}
void count() {
pos = d;
if (E[ch[0]->pos].b > E[pos].b) pos = ch[0]->pos;
if (E[ch[1]->pos].b > E[pos].b) pos = ch[1]->pos;
}
void setc(node *r, bool c) {ch[c] = r; r->fa = this;}
} *rt[N];
node pool[N];
int n, m, tot = 0;
namespace LCT {
int ans = 0x7fffffff;
bool cmp(nodeE X, nodeE Y) {return X.a < Y.a;}
node *newnode(int num = 0) {
node *t = &pool[++tot];
t->ch[0] = t->ch[1] = t->fa = null;
t->d = t->pos = num; t->rev = 0;
return t;
}
void Build() {
null = &pool[0];
null->ch[0] = null->ch[1] = null->fa = null;
null->d = null->pos = null->rev = 0;
read(n); read(m);
for(int i = 1; i <= m; ++i)
{read(E[i].x); read(E[i].y); read(E[i].a); read(E[i].b);}
sort(E + 1, E + m + 1, cmp);
for(int i = 1; i <= n; ++i)
rt[i] = newnode();
for(int i = 1; i <= m; ++i)
rt[n + i] = newnode(i);
E[0].b = 0;
}
void rotate(node *r) {
node *f = r->fa;
bool c = r->pl();
if (f->check()) r->fa = f->fa;
else f->fa->setc(r, f->pl());
f->setc(r->ch[!c], c);
r->setc(f, !c);
f->count();
}
void update(node *r) {if (!r->check()) update(r->fa); r->push();}
void splay(node *r) {
update(r);
for(; !r->check(); rotate(r))
if (!r->fa->check()) rotate(r->pl() == r->fa->pl() ? r->fa : r);
r->count();
}
node *access(node *r) {node *y = null; for(; r != null; y = r, r = r->fa) {splay(r); r->ch[1] = y;} return y;}
void changert(node *r) {access(r)->rev ^= 1; splay(r);}
void link(node *r, node *t) {changert(r); r->fa = t;}
void cut(node *r, node *t) {changert(r); access(t); splay(t); t->ch[0]->fa = null; t->ch[0] = null;}
node *findrt(node *r) {access(r); splay(r); while(r->ch[0] != null) r = r->ch[0]; return r;}
int ask(node *r, node *t) {changert(r); access(t); splay(t); return t->pos;}
void work(int u, int v, int edge) {
if (findrt(rt[u]) == findrt(rt[v])) {
int k = ask(rt[u], rt[v]);
if (E[k].b > E[edge - n].b) {
cut(rt[u], rt[k + n]);
cut(rt[v], rt[k + n]);
link(rt[u], rt[edge]);
link(rt[v], rt[edge]);
}
} else {
link(rt[u], rt[edge]);
link(rt[v], rt[edge]);
}
if (findrt(rt[1]) == findrt(rt[n]))
ans = min(ans, E[edge - n].a + E[ask(rt[1], rt[n])].b);
}
void AC() {printf("%d\n", ans == 0x7fffffff ? -1 : ans);}
} int main() {
LCT::Build();
for(int i = 1; i <= m ;++i)
LCT::work(E[i].x, E[i].y, i + n);
LCT::AC();
return 0;
}

我的代码就是一堵墙,让$300$行的$LinkCutTree$在压行大法前颤抖吧~~~

【BZOJ 3669】【NOI 2014】魔法森林 LCT+枚举边的更多相关文章

  1. 【BZOJ 3669】 [Noi2014]魔法森林 LCT维护动态最小生成树

    这道题看题意是在求一个二维最小瓶颈路,唯一可行方案就是枚举一维在这一维满足的条件下使另一维最小,那么我们就把第一维排序利用A小的边在A大的情况下仍成立来动态加边维护最小生成树. #include &l ...

  2. [NOI 2014]魔法森林

    Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...

  3. 【bzoj 3669】[Noi2014]魔法森林

    Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...

  4. bzoj 3669: [Noi2014]魔法森林 (LCT & kruskal)

    这道题呢, 首先按照关键字a排序,然后不断地加边,用lct维护这个过程 具体实现: 先按照关键字a排序,枚举每一条边,判断两点是否已经联通(kruskal 部分)如果联通,就在两点路径间寻找最大的b, ...

  5. BZOJ 3669: [Noi2014]魔法森林( LCT )

    排序搞掉一维, 然后就用LCT维护加边MST. O(NlogN) ------------------------------------------------------------------- ...

  6. bzoj 3669: [Noi2014]魔法森林 (LCT)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3669 题面: 3669: [Noi2014]魔法森林 Time Limit: 30 Sec  ...

  7. bzoj 3669: [Noi2014] 魔法森林 LCT版

    Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...

  8. BZOJ 3669: [Noi2014]魔法森林 [LCT Kruskal | SPFA]

    题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,…,n,边标号为 1,2,3,…, ...

  9. [NOI2014]魔法森林 LCT

    题面 [NOI2014]魔法森林 题解 一条路径的代价为路径上的\(max(a[i]) + max(b[i])\),因为一条边同时有$a[i], b[i]$2种权值,直接处理不好同时兼顾到,所以我们考 ...

随机推荐

  1. ural 1208 Legendary Teams Contest

    题意描述:给定K支队伍,每队三个队员,不同队伍之间队员可能部分重复,输出这些队员同时能够组成多少完整的队伍: DFS,利用DFS深度优先搜索,如果该队所有队员都没有被访问过,那么将该队计入结果,再去选 ...

  2. 虚拟机VMware怎么完全卸载干净

    虚拟机VMware怎么完全卸载干净 听语音 | 浏览:19929 | 更新:2014-12-21 10:28 | 标签:虚拟机 1 2 3 4 5 6 7 分步阅读 一键约师傅 百度师傅高质屏和好师傅 ...

  3. gzip: stdout: No space left on device问题的解决

    一.问题描述 最近安装了ubuntu14.04,并在ubuntu14.04中编译了一次内核.这之后大部分情况下用sudo apt-get install 安装应用都会出现“gzip: stdout: ...

  4. jquery的工具方法isFunction/isArray/isWindow/isNumeric/isPlainObject/isEmptyObject

    isFunction : 是否函数 isArray : 是否数组 isWindow : 是否window isNumeric : 是否数字 type : 数据类型方法 isPlainObject : ...

  5. MySql MyISAM和InnoDB的区别

    MyISAM:这个是默认类型,它是基于传统的ISAM类型,ISAM是Indexed Sequential Access Method (有索引的 顺序访问方法) 的缩写,它是存储记录和文件的标准方法. ...

  6. QT 数据库编程四

    //vmysql.cpp #include "vmysql.h" #include <QMessageBox> Vmysql::Vmysql() { mysql_ini ...

  7. NOI2018准备 Day9

    tjvj清北入学测试又打了一上午,暴力搜索得了部分分,dp全崩了,8道题凑了500分. 下午打了个速度赛,成绩未知,另外又做了1道题,这效率low到爆!!!

  8. 增强for循环(forearch)

    增强for循环是为了简化在遍历数组需要先获得数组的长度或者在遍历集合中的元素的时候需要使用迭代器的操作. 引入时间:JDK1.5 语法格式: for(数据类型 变量 :需要迭代的数组或者集合){ } ...

  9. 【开源分享:入门到精通ASP.NET MVC+EF6+Bootstrap】从这里开始,一起搭框架(1)开篇介绍

    框架简介 这几年一直在做ASP.NET开发,几年前做项目都是老老实实一行行的写代码,后来发现那些高手基本都会有自己积累起来的代码库,现在称之为开发框架,基础代码不用再去堆,主要精力可以集中在业务逻辑实 ...

  10. 如何阻止SELECT * 语句

    我们每个人都知道是个不好的做法,但有时我们还是要这样做:我们执行SELECT * 语句.这个方法有很多弊端: 你从你的表里返回每个列,甚至后期加的列.想下如果你的查询里将来加上了VARCHAR(MAX ...