康拓展开:

$X=a_n*(n-1)!+a_{n-1}*(n-2)!+\ldots +a_2*1!+a_1*0!$

X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+a2*1!+a1*0! 其中,a为整数,并且0<=ai<i(1<=i<=n)

这个式子就是康托展开,初看同排列没什么关系,实则不然。下面通过举个例子看一下

一、用康托展开判断一个排列是第几小的

以{1,2,3}为例。我们定义排列的顺序从小到大为123,132,213,231,312,321。

然后我们随便给一个比如312,要判断他在排列中第几大的,则我们可以这样思考,首先第一个比3小可以是1或2,则有2*2!中,第二位比1小,没有,第三位没有。如果说这个不够明显我们看一下321是第几个,首先比3小的2*2!,比2小的1*1!,共2*2!+1*1!=6,。至于其他的各位有兴趣也可以去计算。但这不是我们的重点,我们的重点是得到全排列。

二、康托逆展开

既然康托展开可以判断出某个组合是第几个,那么他是不是也可以构造出第几个排列的值呢?答案是可以的,这里我们叫做康托逆展开。同样的举个例子来看他的工作过程。还是{1,2,3}。现在我们要求出第四大的排列,首先(4-1)%2!=1余1,这个结果表示有有1个数比他小的是2,也就是排列的第一位是2,然后1-1=0则表示没有比第二个大的,即第二个为3,故231。其他例子各位可以自己试。这里给出C++的实现代码

 int fac[]={,,,,,,,};
int* cantor(int m,int n)//m is for the size of the set,n is the sequence number
{
bool flag[]={false};
int *ans=new int[];
int i=m;
int j=n-;
while(i--)
{
int temp=(j)/fac[i]+;
int count=-,t;
for(t=;t<m;t++)
{
if(!flag[t])
count++;
if(temp==count)
break;
}
ans[m-i-]=t;
flag[t]=true;
j=(j)%fac[i];
}
//for(int t=0;t<m;t++)
//cout<<ans[t];
//cout<<endl;
return ans;
}

不过写完之后突然发现STL中有实现全排列的函数叫

next_permutation()

有兴趣可以看看

--------------------------------------------------python-----------------------------------------------------------

使用python的话也有一个相应的库iteltools,可以实现排列组合

使用方法见代码

 >>>import itertools
>>>list(itertools.permutations([1,2,3,4],4))
[(1, 2, 3, 4), (1, 2, 4, 3), (1, 3, 2, 4), (1, 3, 4, 2), (1, 4, 2, 3), (1, 4, 3, 2), (2, 1, 3, 4), (2, 1, 4, 3), (2, 3, 1, 4), (2, 3, 4, 1), (2, 4, 1, 3), (2, 4, 3, 1), (3, 1, 2, 4), (3, 1, 4, 2), (3, 2, 1, 4), (3, 2, 4, 1), (3, 4, 1, 2), (3, 4, 2, 1), (4, 1, 2, 3), (4, 1, 3, 2), (4, 2, 1, 3), (4, 2, 3, 1), (4, 3, 1, 2), (4, 3, 2, 1)]
>>>list(itertools.combinations([1,2,3,4],4))
[(1, 2, 3, 4)]

用康托展开实现全排列(STL、itertools)的更多相关文章

  1. OJ 1188 全排列---康托展开

    题目描述 求n的从小到大第m个全排列(n≤20). 输入 n和m 输出 输出第m个全排列,两个数之间有一空格. 样例输入 3 2 样例输出 1 3 2 #include<cstdio> # ...

  2. P3014 [USACO11FEB]牛线Cow Line && 康托展开

    康托展开 康托展开为全排列到一个自然数的映射, 空间压缩效率很高. 简单来说, 康托展开就是一个全排列在所有此序列全排列字典序中的第 \(k\) 大, 这个 \(k\) 即是次全排列的康托展开. 康托 ...

  3. LightOJ1060 nth Permutation(不重复全排列+逆康托展开)

    一年多前遇到差不多的题目http://acm.fafu.edu.cn/problem.php?id=1427. 一开始我还用搜索..后来那时意外找到一个不重复全排列的计算公式:M!/(N1!*N2!* ...

  4. 康托展开:对全排列的HASH和还原,判断搜索中的某个排列是否出现过

    题目:http://acm.hrbust.edu.cn/index.php?m=ProblemSet&a=showProblem&problem_id=2297 前置技能:(千万注意是 ...

  5. [洛谷P3014][USACO11FEB]牛线Cow Line (康托展开)(数论)

    如果在阅读本文之前对于康托展开没有了解的同学请戳一下这里:  简陋的博客    百度百科 题目描述 N(1<=N<=20)头牛,编号为1...N,正在与FJ玩一个疯狂的游戏.奶牛会排成一行 ...

  6. UVA11525 Permutation[康托展开 树状数组求第k小值]

    UVA - 11525 Permutation 题意:输出1~n的所有排列,字典序大小第∑k1Si∗(K−i)!个 学了好多知识 1.康托展开 X=a[n]*(n-1)!+a[n-1]*(n-2)!+ ...

  7. leetcode 60. Permutation Sequence(康托展开)

    描述: The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of t ...

  8. NYOJ--139--我排第几个(康托展开)

    我排第几个 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 现在有"abcdefghijkl"12个字符,将其所有的排列中按字典序排列,给出任意一 ...

  9. 康托展开&&康托逆展开

    康托展开 简介:对于给定的一个排列,求它是第几个,比如54321是n=5时的第120个.(对于不是1~n的排列可以离散化理解) 做法: ans=a[n]*(n-1)!+a[n-1]*(n-2)!+~~ ...

随机推荐

  1. JNative library not loaded, sorry ! win7 64位系统

    java调用动态链接库时,使用myeclipse或者其他IDE工具时,针对于web程序,会报这样的错误: java.lang.IllegalStateException: JNative librar ...

  2. C# 毕业证书打印《三》

    打印很关键的方法,打印方法DataPrint(),将你要打印的数据信息发送到打印机就可以了,打印机将自动处理. public void DataPrint() { try { PrintDocumen ...

  3. 第七天 面向对象进阶与socket编程

    1.静态方法(用得少)(解除某个函数跟类的关联,加了静态方法后,类便不能将类的参数传给静态方法函数了) class Dog(object): def __init__(self,name): @sta ...

  4. ffmpeg-20160508-git-bin-v2

    ESC 退出 0 进度条开关 1 屏幕原始大小 2 屏幕1/2大小 3 屏幕1/3大小 4 屏幕1/4大小 S 下一帧 [ -2秒 ] +2秒 ; -1秒 ' +1秒 下一个帧 -> -5秒 f ...

  5. BUG归因

    文字类1.名称不统一:日期/时间,编号/流水号, 2.单元格式 数据类错误:取值错位 编程上 控件类:JS报错 1.框架收缩 2.置灰,限定修改项 3.隐形,不显示 4.XX报错 5.无法输入:自动补 ...

  6. [ 转] [Android]多式样ProgressBar

    多式样ProgressBar 普通圆形ProgressBar 该类型进度条也就是一个表示运转的过程,例如发送短信,连接网络等等,表示一个过程正在执行中. 一般只要在XML布局中定义就可以了. < ...

  7. VC++ LoadLibrary失败,错误126(找不到指定的模块)

    在VS中调用一个资源模块dll,LoadLibrary返回值为NULL,没有加载成功.GetLastError后原因为"找不到指定的模块"!代码如下: HINSTANCE hIns ...

  8. JS 循环练习

    规律   大范围套小范围   循环   分支语句   switch case 嵌套  死循环 while(true)  打破循环   break    continue    while(true) ...

  9. jquery[siblings]取得一个包含匹配的元素集合中每一个元素的所有唯一同辈元素的元素集合

    取得一个包含匹配的元素集合中每一个元素的所有唯一同辈元素的元素集合,用于筛选同辈元素的表达式 $("#pageList").click(function(){ $(this).pa ...

  10. Xcode添加注释

    VVDocumenter-Xcode,自动生成注释,感觉比较方便的插件,分享下,应该很多人都知道= = 在 https://github.com/onevcat/VVDocumenter-Xcode  ...