题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4911

题目大意:最多可以交换K次,就最小逆序对数

解题思路

逆序数定理,当逆序对数大于0时,若ak<ak+1,那么交换后逆序对数+1,反之-1。

设原始序列最小逆序对数=cnt

那么,交换K次的最小逆序对数max(0,cnt-k)

在求原始序列最小逆序对数上,朴素暴力复杂度O(n^2)不可取

有以下两种O(nlogn)的方法:

①排序内计算:

主要是利用归并排序内的特性,即相邻两个归并序列逆序情况不改变,[5,4,2,1]到[4,5]、[1,2]

在排序纠正逆序之后,4和1,5和2的逆序情况没有改变。利用这个性质,只要在归并排序对两个子序列merge排序时,统计逆序对数即可。

即,边排序,边统计,假设left、right序列是递归传递过来的序列从0开始重新编号之后,初始偏移,i=j=0

当left[i]>right[j]出现逆序情况时,cnt+=(leftnum-i),即当前right[j]元素和left[i]及以后元素都构成逆序对。

归并后,递归继续merge更大的序列。统计复杂度=排序复杂度O(nlogn)

注意归并排序的写法,left尾和right尾要设为inf,这样后跑完的序列会直接和inf比较。

g#include "cstdio"
#include "algorithm"
#define LL long long
using namespace std;
int a[];
LL cnt=;
void merge(int l,int m,int r)
{
int lnum=m-l+,rnum=r-m;
int *LEFT=new int[lnum+],*RIGHT=new int[rnum+];
for(int i=;i<lnum;i++) LEFT[i]=a[l+i];
for(int i=;i<rnum;i++) RIGHT[i]=a[m++i];
LEFT[lnum]=RIGHT[rnum]=0x3fffffff;
int i=,j=;
for(int k=l;k<=r;k++)
{
if(LEFT[i]<=RIGHT[j])
{
a[k]=LEFT[i];
i++;
}
else
{
a[k]=RIGHT[j];
j++;
cnt+=(lnum-i);
}
}
}
void mergeSort(int l,int r)
{
if(l<r)
{
int m=(r-l)/+l;
mergeSort(l,m);
mergeSort(m+,r);
merge(l,m,r);
}
}
int main()
{
//freopen("in.txt","r",stdin);
int n,k;
while(scanf("%d%d",&n,&k)!=EOF)
{
cnt=;
for(int i=;i<n;i++) scanf("%d",&a[i]);
mergeSort(,n-);
printf("%I64d\n",max((LL),cnt-k));
}
}

②树状数组:

很奇葩的方法。首先使用记录原始位置pos的排序,然后对排序后的元素进行离散化处理。

如序列5,1,1,离散化成2,1,1,树状数组sum[i]记录的是离散化位置被激活的次数,即add(Hash[i],1)

如离散化位置1,2,初始值[0,0], 首先按照输入顺序add离散化位置。

输入5,sum情况[0,1],那么树状数组getsum统计的是,在到此数的顺序数组上,被激活的个数。

用原始位置i-getsum,结果是,不含这个数,之前被激活的个数,即统计逆序情况。

如此时就是1,,这里由于1-1=0,即在5之前没有逆序对。

输入1,sum情况[1,1],getsum=1,i-getsum=1,有一个逆序对。[5,1],原因是5在1之前激活了。

输入1,sum情况[2,1],getsum=2, i-getsum=1,有一个逆序对。这里要对重复的数做add,因为重复的数,i增加了,

getsum也要对应的增加,不然,会和前面重复数的算重了,比如3-1=2,,就是算重了。

#include "cstdio"
#include "algorithm"
#include "cstring"
#include "map"
using namespace std;
#define LL long long
int sum[],n,k,val,N;
LL cnt;
int lowbit(int x) {return x&(-x);}
struct Num
{
int val,pos;
Num() {}
Num(int val,int pos):val(val),pos(pos) {}
bool operator < (const Num &a) const {return val<a.val;}
}a[];
LL getsum(int x)
{
LL ret=;
while(x>)
{
ret+=sum[x];
x-=lowbit(x);
}
return ret;
}
void update(int x,int d)
{
while(x<=N)
{
sum[x]+=d;
x+=lowbit(x);
}
}
int main()
{
freopen("in.txt","r",stdin);
while(scanf("%d%d",&n,&k)!=EOF)
{
memset(sum,,sizeof(sum));
map<LL,LL> Hash;
cnt=;
for(int i=;i<n;i++)
{
scanf("%d",&val);
a[i]=Num(val,i);
}
sort(a,a+n);
int id=;
Hash[a[].pos]=id;
for(int i=;i<n;i++) //离散化
{
if(a[i].val==a[i-].val) Hash[a[i].pos]=id;
else Hash[a[i].pos]=++id;
}
N=id;
for(int i=;i<n;i++)
{
update(Hash[i],);
cnt+=(i+-getsum(Hash[i]));
}
printf("%I64d\n",max((LL),cnt-k));
}
}

HDU 4911 (树状数组+逆序数)的更多相关文章

  1. hdu2838Cow Sorting(树状数组+逆序数)

    题目链接:点击打开链接 题意描写叙述:给定一个长度为100000的数组,每一个元素范围在1~100000,且互不同样,交换当中的随意两个数须要花费的代价为两个数之和. 问怎样交换使数组有序.花费的代价 ...

  2. HDU5196--DZY Loves Inversions 树状数组 逆序数

    题意查询给定[L, R]区间内 逆序对数 ==k的子区间的个数. 我们只需要求出 子区间小于等于k的个数和小于等于k-1的个数,然后相减就得出答案了. 对于i(1≤i≤n),我们计算ri表示[i,ri ...

  3. HDU3465 树状数组逆序数

    Life is a Line Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)T ...

  4. hdu 4638 树状数组 区间内连续区间的个数(尽可能长)

    Group Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  5. hdu 4777 树状数组+合数分解

    Rabbit Kingdom Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  6. [树状数组+逆序对][NOIP2013]火柴排队

    火柴排队 题目描述 涵涵有两盒火柴,每盒装有n根火柴,每根火柴都有一个高度.现在将每盒中的火柴各自排成一列,同一列火柴的高度互不相同,两列火柴之间的距离定义为:∑ (ai-bi)2,i=1,2,3,. ...

  7. HDU 1394 树状数组+离散化求逆序数

    对于求逆序数问题,学会去利用树状数组进行转换求解方式,是很必要的. 一般来说我们求解逆序数,是在给定一串序列里,用循环的方式找到每一个数之前有多少个比它大的数,算法的时间复杂度为o(n2). 那么我们 ...

  8. hdu 5497 Inversion 树状数组 逆序对,单点修改

    Inversion Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5497 ...

  9. HDU 2689Sort it 树状数组 逆序对

    Sort it Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

随机推荐

  1. poj 1837

    题目链接:http://poj.org/problem?id=1837 题目大意: 有一个天平,左臂右臂各长15,然后给出n,m,n代表有几个挂钩,挂钩给出负数代表在左臂的距离,正数则在右臂m代表有m ...

  2. case/casez/casex 的区分与使用

    参考:http://www.cnblogs.com/poiu-elab/archive/2012/11/02/2751323.html 与  verilog数字系统设计基础 一般来说,使用最多的是CA ...

  3. 学习一下《JavaEE开发的颠覆者 Spring Boot实战 》

    SPRING,绕不过去的.

  4. Analysis Services OLAP 概述

    1. 什么是OLAP •定义1 :OLAP(联机分析处理)是针对特定问题的联机数据访问和分析.通过对信息(维数据)的多种可能的观察形式进行快速.稳定一致和交互性的存取,允许管理决策人员对数据进行深入观 ...

  5. POJ 2299 Ultra-QuickSort 逆序数 树状数组 归并排序 线段树

    题目链接:http://poj.org/problem?id=2299 求逆序数的经典题,求逆序数可用树状数组,归并排序,线段树求解,本文给出树状数组,归并排序,线段树的解法. 归并排序: #incl ...

  6. web.xml中同一servlet/filter配置多个url-pattern

    转自:http://blog.sina.com.cn/s/blog_4c2c2a0c0100dh67.html 若你的servlet要多个地址,或你的filter需要过滤不同的url如有*.jsp,* ...

  7. Java 对象序列化(Serialization Object)

    官网文档:https://docs.oracle.com/javase/tutorial/jndi/objects/serial.html 优秀博客: http://www.cnblogs.com/g ...

  8. php随机生成验证码

    我们经常需要服务器向前端发送验证码,验证码需要随机产生,下面的用简单的代码实现了这一过程: <?php $pool='0123456789abcdefghijklmnopqrstuvwxyzAB ...

  9. h5嵌入视频遇到的bug及总结---转载

    最近做的一个h5活动因为嵌入视频而发现了好多以前从未发现的问题,在测试的时候不同系统不同版本不同环境等多多少少都出现了些问题,搞得我也是焦头烂额的,不过好在最终问题都解决了,自己也学到了好多东西,为了 ...

  10. Activity之间传递数据的方式及常见问题总结

    Activity之间传递数据一般通过以下几种方式实现: 1. 通过intent传递数据 2. 通过Application 3. 使用单例 4. 静态成员变量.(可以考虑 WeakReferences) ...